CO oxidation is an important reaction both experimentally and industrially, and its performance is usually dominated by the charge states of catalysts. For example, CO oxidation on the platinum (Pt) surface requires a properly charged state for the balance of adsorption and activation of CO and O. Here, we present "Mott-Schottky modulated catalysis" on Pt nanoparticles (NPs) via an electron-donating carbon nitride (CN) support with a tunable Fermi level.
View Article and Find Full Text PDFCeria has recently shown intriguing hydrogenation reactivity in catalyzing alkyne selectively to alkenes. However, the mechanism of the hydrogenation reaction, especially the activation of H, remains experimentally elusive. In this work, we report the first direct spectroscopy evidence for the presence of both surface and bulk Ce-H species upon H dissociation over ceria via in situ inelastic neutron scattering spectroscopy.
View Article and Find Full Text PDFAlthough perovskites have been widely used in catalysis, tuning of their surface termination to control reaction selectivity has not been well established. In this study, we employed multiple surface-sensitive techniques to characterize the surface termination (one aspect of surface reconstruction) of SrTiO (STO) after thermal pretreatment (Sr enrichment) and chemical etching (Ti enrichment). We show, by using the conversion of 2-propanol as a probe reaction, that the surface termination of STO can be controlled to greatly tune catalytic acid/base properties and consequently the reaction selectivity over a wide range, which is not possible with single-metal oxides, either SrO or TiO .
View Article and Find Full Text PDFTaming interfacial electronic effects on Pt nanoparticles modulated by their concomitants has emerged as an intriguing approach to optimize Pt catalytic performance. Here, we report Pt nanoparticles assembled on vacancy-abundant hexagonal boron nitride nanosheets and their use as a model catalyst to embrace an interfacial electronic effect on Pt induced by the nanosheets with N-vacancies and B-vacancies for superior CO oxidation catalysis. Experimental results indicate that strong interaction exists between Pt and the vacancies.
View Article and Find Full Text PDFThe nature of the surface species formed through the adsorption of CO on amine-grafted mesoporous silica is investigated through in situ FTIR spectroscopy with the aid of N dynamic nuclear polarization (DNP) and C NMR spectroscopy. Primary, secondary, and tertiary amines are functionalized onto a mesoporous SBA-15 silica. Both isotopically labeled CO and natural-abundance CO are used for accurate FTIR peak assignments, which are compared with assignments reported previously.
View Article and Find Full Text PDFThree primary amine materials functionalized onto mesoporous silica with low, medium, and high surface amine coverages are prepared and evaluated for binary CO2/H2O adsorption under dilute conditions. Enhancement of amine efficiency due to humid adsorption is most pronounced for low surface amine coverage materials. In situ FT-IR spectra of adsorbed CO2 on these materials suggest this enhancement may be associated with the formation of bicarbonate species during adsorption on materials with low surface amine coverage, though such species are not observed on high surface coverage materials.
View Article and Find Full Text PDFFlexible framework dynamics present in the subset of metal-organic frameworks known as soft porous crystals give rise to interesting structural properties that are unique to this class of materials. In this work, we use experiments and molecular simulation to understand the highly dynamic nanorotor behavior of the 1,4-diazabicyclo[2.2.
View Article and Find Full Text PDFThe chemical oxidation of activated carbon by H2 O2 and H2 SO4 is investigated, structural and chemical modifications are characterized, and the materials are used as catalysts for the hydrolysis of cellulose. Treatment with H2 O2 enlarges the pore size and imparts functional groups such as phenols, lactones, and carboxylic acids. H2 SO4 treatment targets the edges of carbon sheets primarily, and this effect is more pronounced with a higher temperature.
View Article and Find Full Text PDFThe measurement of isosteric heats of adsorption of silica supported amine materials in the low pressure range (0-0.1 bar) is critical for understanding the interactions between CO2 and amine sites at low coverage and hence to the development of efficient amine adsorbents for CO2 capture from flue gas and ambient air. Heats of adsorption for an array of silica-supported amine materials are experimentally measured at low coverage using a Calvet calorimeter equipped with a customized dosing manifold.
View Article and Find Full Text PDFSolid oxide-supported amine sorbents for CO2 capture are amongst the most rapidly developing classes of sorbent materials for CO2 capture. Herein, basic γ supports are used as hosts for amine sites through the grafting of 3-aminopropyltrimethoxysilane to the alumina surface under a variety of conditions, yielding the expected surface-grafted alkylamine groups, as demonstrated by FTIR spectroscopy and (29)Si and (13)C cross-polarization magic-angle spinning (CPMAS NMR) spectroscopy. Grafting amine sites on the surface in the presence of water leads to a high density of amine sites on the surface whereas simultaneously creating a unique type of aluminum species on the surface, as demonstrated by both 1D and 2D (27)Al MAS NMR spectroscopy.
View Article and Find Full Text PDF