Background: Predicting protein subnuclear localization is a challenging problem. Some previous works based on non-sequence information including Gene Ontology annotations and kernel fusion have respective limitations. The aim of this work is twofold: one is to propose a novel individual feature extraction method; another is to develop an ensemble method to improve prediction performance using comprehensive information represented in the form of high dimensional feature vector obtained by 11 feature extraction methods.
View Article and Find Full Text PDFBackground: The composition vector (CV) method has been proved to be a reliable and fast alignment-free method to analyze large COI barcoding data. In this study, we modify this method for analyzing multi-gene datasets for plant DNA barcoding. The modified method includes an adjustable-weighted algorithm for the vector distance according to the ratio in sequence length of the candidate genes for each pair of taxa.
View Article and Find Full Text PDF