Publications by authors named "Guo Qiang Chen"

The maintenance of genomic integrity in rapidly proliferating cells is a substantial challenge during embryonic development. Although numerous cell-intrinsic mechanisms have been revealed, little is known about genome-protective effects and influences of developmental tissue microenvironments on tissue-forming cells. Here we show that fetal liver hepatocytes provide protection to haematopoietic stem and progenitor cell (HSPC) genomes.

View Article and Find Full Text PDF
Article Synopsis
  • Cutaneous T-cell lymphoma (CTCL) is a type of skin cancer that affects T cells and can spread throughout the body, making current treatments like chemotherapy less effective and often accompanied by severe side effects.
  • Research has identified cyclin dependent kinase 9 (CDK9) as a key factor in CTCL growth, with specific malignant T-cell characteristics revealed through single-cell RNA sequencing.
  • Targeting CDK9 with specialized treatments like PROTACs not only significantly reduces CTCL cell growth but also, when combined with all-trans retinoic acid (ATRA), shows promise for more effective and complete treatment options.
View Article and Find Full Text PDF

The trade-offs exist between microbial growth and bioproduct synthesis including intracellular polyester polyhydroxybutyrate (PHB). Under nitrogen limitation, more carbon flux is directed to PHB synthesis while growth is inhibited with diminishing overall carbon utilization, similar to the suboptimal carbon utilization during glycolysis-derived pyruvate decarboxylation. This study reconfigured the central carbon network of Halomonas bluephagenesis to improve PHB yield theoretically and practically.

View Article and Find Full Text PDF

Obesity and related diseases pose a major health risk, yet current anti-obesity drugs inadequately addressing clinical needs. Here we show AA005, an annonaceous acetogenin mimic, resists obesity induced by high-fat diets and leptin mutations at non-toxic doses, with the alpha subunit of the mitochondrial trifunctional protein (HADHA) as a target identified through proteomics and in vitro validation. Pharmacokinetic analysis shows AA005 enriches in adipose tissue, prompting the creation of adipose-specific Hadha-deficient mice.

View Article and Find Full Text PDF

Gamma-Aminobutyric acid (GABA) is a derivative of L-glutamate, also a precursor for the synthesis of 2-pyrrolidone, which is a monomer of nylon-4. This study achieved a one-step biosynthesis of GABA and 2-pyrrolidone by Halomonas bluephagenesis overexpressing key genes involved in GABA and 2-pyrrolidone synthesis and deleting GABA degradation genes combined with reducing the degradation of 2-pyrrolidone precursor. The resulting H.

View Article and Find Full Text PDF

The understanding of cellular energy metabolism activation by engineered scaffolds remains limited, posing challenges for therapeutic applications in tissue regeneration. This study presents biosynthesized poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] and its major degradation product, 3-hydroxybutyrate (3HB), as endogenous bioenergetic fuels that augment cellular anabolism, thereby facilitating the progression of human bone marrow-derived mesenchymal stem cells (hBMSCs) towards osteoblastogenesis. Our research demonstrated that 3HB markedly boosts in vitro ATP production, elevating mitochondrial membrane potential and capillary-like tube formation.

View Article and Find Full Text PDF

Loss of phosphatase and tensin homolog (PTEN) has been linked to an immunosuppressive tumor microenvironment, but its underlying mechanisms remain largely enigmatic. Here, we report that PTEN can be secreted by the transmembrane emp24 domain-containing protein 10 (TMED10)-channeled protein secretion pathway. Inhibiting PTEN secretion from tumor cells contributes to immunosuppression and impairs the tumor-suppressive role of PTEN, while intratumoral injection of PTEN protein promotes antitumor immunity and suppresses tumor growth in mice.

View Article and Find Full Text PDF

Immunotherapy elicits a systemic antitumour immune response in peripheral circulating T cells. However, the T cell trafficking circuit between organs and their contributions to antitumour immunity remain largely unknown. Here we show in multiple mouse leukaemia models that high infiltration of leukaemic cells in bone marrow (BM) stimulates the transition of CD8CD44CD62L central memory T cells into CD8CD44CD62L T cells, designated as inter-organ migratory T cells (T cells).

View Article and Find Full Text PDF

Microbial instability is a common problem during bio-production based on microbial hosts. Halomonas bluephagenesis has been developed as a chassis for next generation industrial biotechnology (NGIB) under open and unsterile conditions. However, the hidden genomic information and peculiar metabolism have significantly hampered its deep exploitation for cell-factory engineering.

View Article and Find Full Text PDF

Vascular endothelial cells (VECs) are key players in the formation of neovessels and tumor metastasis, the ultimate cause of the majority of cancer-related human death. However, the crosstalk between VECs and metastasis remain greatly elusive. Based on our finding that tumor-associated VECs present significant decrease of Nrdp1 protein which is closely correlated with higher metastatic probability, herein we show that the conditional medium from hypoxia-incubated cancer cells induces extensive Nrdp1 downregulation in human and mouse VECs by vascular endothelial growth factor (VEGF), which activates CHIP, followed by Nrdp1 degradation in ubiquitin-proteasome-dependent way.

View Article and Find Full Text PDF

Prostate cancer is a prevalent and debilitating disease that necessitates effective prevention and treatment strategies. Green tea, a well-known beverage derived from the Camellia sinensis plant, contains bioactive compounds with potential health benefits, including catechins and polyphenols. This comprehensive review aims to explore the potential benefits of green tea in prostate cancer prevention and treatment by examining existing literature.

View Article and Find Full Text PDF

Ectoine, a crucial osmoprotectant for salt adaptation in halophiles, has gained growing interest in cosmetics and medical industries. However, its production remains challenged by stringent fermentation process in model microorganisms and low production level in its native producers. Here, we systematically engineered the native ectoine producer Halomonas bluephagenesis for ectoine production by overexpressing ectABC operon, increasing precursors availability, enhancing product transport system and optimizing its growth medium.

View Article and Find Full Text PDF

Background: Nervus intermedius neuralgia (NIN) is characterized by paroxysmal episodes of sharp, lancinating pain in the deep ear. Unfortunately, only a few studies exist in the literature on this pain syndrome, its pathology and postoperative outcomes.

Method: We conducted a retrospective review of four cases diagnosed with NIN who underwent a neurosurgical intervention at our center from January 2015 to January 2023.

View Article and Find Full Text PDF

Additive manufacturing (AM) holds great potential for processing natural polymer hydrogels into 3D scaffolds exploitable for tissue engineering and in vitro tissue modelling. The aim of this research activity was to assess the suitability of computer-aided wet-spinning (CAWS) for AM of hyaluronic acid (HA)/chitosan (Cs) polyelectrolyte complex (PEC) hydrogels. A post-printing treatment based on HA chemical cross-linking via transesterification with poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) was investigated to enhance the structural stability of the developed scaffolds in physiological conditions.

View Article and Find Full Text PDF

Polyhydroxyalkanoates (PHA) have evolved into versatile biopolymers, transcending their origins as mere bioplastics. This extensive review delves into the multifaceted landscape of PHA applications, shedding light on the diverse industries that have harnessed their potential. PHA has proven to be an invaluable eco-conscious option for packaging materials, finding use in films foams, paper coatings and even straws.

View Article and Find Full Text PDF

The use of extremophile organisms such as Halomomas spp. can eliminate the need for fermentation sterilization, significantly reducing process costs. Microbial fermentation is considered a pivotal strategy to reduce reliance on fossil fuel resources; however, sustainable processes continue to incur higher costs than their chemical industry counterparts.

View Article and Find Full Text PDF

Predictability and robustness are challenges for bioproduction because of the unstable intracellular synthetic activities. With the deeper understanding of the gene expression process, fine-tuning has become a meaningful tool for biosynthesis optimization. This study characterized several gene expression elements and constructed a multiple inducible system that responds to ten different small chemical inducers in halophile bacterium Halomonas bluephagenesis.

View Article and Find Full Text PDF

is a halophilic bacterium capable of efficiently producing polyhydroxyalkanoates and other valuable chemicals through high salinity open fermentation, offering an appealing platform for next-generation industrial biotechnology. Various techniques have been developed to engineer , each with its inherent shortcomings. Genome editing methods often entail complex and time-consuming processes, while flexible expression systems relying on plasmids necessitate the use of antibiotics.

View Article and Find Full Text PDF

5-Aminovaleric acid (5-AVA), 5-hydroxyvalerate (5HV), copolymer P(3HB-co-5HV) of 3-hydroxybutyrate (3HB) and 5HV were produced from L-lysine as a substrate by recombinant Halomonas bluephagenesis constructed based on codon optimization, deletions of competitive pathway and L-lysine export protein, and three copies of davBA genes encoding L-lysine monooxygenase (DavB) and 5-aminovaleramide amidohydrolase (DavA) inserted into its genome to form H. bluephagenesis YF117ΔgabT, which produced 16.4 g L and 67.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found that when cells lack amino acids, a process happens that causes a protein called mTOR to get a special tag (ubiquitination), which stops it from doing its job.
  • This happens because without enough amino acids, a type of molecule called tRNAs build up, which signals another protein called GCN2 to interact with mTOR.
  • Their research shows a new way that cells can sense whether they have enough amino acids through a specific pathway involving GCN2 and another protein, FBXO22.
View Article and Find Full Text PDF

An overwhelming number of studies have reported the correlation of decreased abundance of butyrate-producing commensals with a wide range of diseases. However, the molecular-level mechanisms whereby gut butyrate causally affects the host mucosal immunity and pathogenesis were poorly understood, hindered by the lack of efficient tools to control intestinal butyrate. Here we engineered a facultative anaerobic commensal bacterium to delivery butyrate at the intestinal mucosal surface, and implemented it to dissect the causal role of gut butyrate in regulating host intestinal homeostasis in a model of murine chronic colitis.

View Article and Find Full Text PDF

Halophilic Halomonas bluephagenesis has been engineered to produce various added-value bio-compounds with reduced costs. However, the salt-stress regulatory mechanism remained unclear. H.

View Article and Find Full Text PDF

Background: Despite increasing evidence that has shown the association of ultra-processed foods (UPFs) with cancer risk, the results remain inconclusive. We, therefore, conducted the meta-analysis to clarify the association by including recently published studies.

Methods: A comprehensive search was conducted in PubMed, Embase, and Web of Science to identify all relevant studies from inception to January 2023.

View Article and Find Full Text PDF

We developed an analysis pipeline that can extract microbial sequences from spatial transcriptomic (ST) data and assign taxonomic labels, generating a spatial microbial abundance matrix in addition to the default host expression matrix, enabling simultaneous analysis of host expression and microbial distribution. We called the pipeline spatial metatranscriptome (SMT) and applied it on both human and murine intestinal sections and validated the spatial microbial abundance information with alternative assays. Biological insights were gained from these novel data that showed host-microbe interaction at various spatial scales.

View Article and Find Full Text PDF

3-Hydroxybutyrate (3HB) is a small ketone body molecule produced endogenously by the body in the liver. Previous studies have shown that 3HB can reduce blood glucose level in type 2 diabetic (T2D) patients. However, there is no systematic study and clear mechanism to evaluate and explain the hypoglycemic effect of 3HB.

View Article and Find Full Text PDF