Proc Natl Acad Sci U S A
July 2020
Compositionally asymmetric diblock copolymers provide an attractive platform for understanding the emergence of tetragonally close-packed, Frank-Kasper phases in soft matter. Block-polymer phase behavior is governed by a straightforward competition between chain stretching and interfacial tension under the constraint of filling space at uniform density. Experiments have revealed that diblock copolymers with insufficient conformational asymmetry to form Frank-Kasper phases in the neat-melt state undergo an interconversion from body-centered cubic (bcc) close-packed micelles to a succession of Frank-Kasper phases (σ to C14 to C15) upon the addition of minority-block homopolymer in the dry-brush regime, accompanied by the expected transition from bcc to hexagonally packed cylinders in the wet-brush regime.
View Article and Find Full Text PDFSelf-consistent field theory (SCFT) is a powerful approach for computing the phase behavior of block polymers. We describe a fast version of the open-source Polymer Self-Consistent Field (PSCF) code that takes advantage of the massive parallelization provided by a graphical processing unit (GPU). Benchmarking double-precision calculations indicate up to 30× reduction in time to converge SCFT calculations of various diblock copolymer phases when compared to the Fortran CPU version of PSCF using the same algorithms, with the speed-up increasing with increasing unit cell size for the diblock polymer problems examined here.
View Article and Find Full Text PDFWe use off-lattice, pruned-enriched Rosenbluth method (PERM) simulations to compute the confinement free energy of a real wormlike chain of effective width and persistence length in a slit of height . For slit heights much larger than the persistence length of the polymer and much smaller than the thermal blob size, the excess free energy of the confined chain is consistent with a modified version of the scaling theory for the extended de Gennes regime in a channel that reflects the blob statistics in slit confinement. Explicitly, for channel sizes [Formula: see text], the difference between the confinement free energy of the real chain and that of an ideal chain scales like .
View Article and Find Full Text PDFNumerous experiments have taken advantage of DNA as a model system to test theories for a channel-confined polymer. A tacit assumption in analyzing these data is the existence of a well-defined depletion length characterizing DNA-wall interactions such that the experimental system (a polyelectrolyte in a channel with charged walls) can be mapped to the theoretical model (a neutral polymer with hard walls). We test this assumption using pruned-enriched Rosenbluth method (PERM) simulations of a DNA-like semiflexible polymer confined in a tube.
View Article and Find Full Text PDF