The Net Primary Productivity (NPP) of vegetation plays a crucial role in terrestrial ecosystems, and a detailed investigation into the annual average NPP and its driving factors is of significant importance for promoting regional ecological construction and sustainable development. This research utilized MOD17A3 annual average NPP data from 2000 to 2020 and employed methods such as trend analysis, Hurst index, random forest model, partial dependence model, geographic weighted regression, and partial least squares-structural equation model (PLS-SEM) to analyze the annual variation characteristics of NPP and its relationship with driving factors in the upper and middle reaches of the Yellow River. The results showed: ① During the period from 2000 to 2020, the annual average NPP in the upper and middle reaches of the Yellow River generally exhibited a year-on-year increasing trend, with 79.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
April 2020
Vegetation plays an important role in the energy exchange, water cycle, carbon cycle, biogeochemical cycle, and maintenance of surface ecosystems. In recent years, regional vegetation cover has changed significantly. This study used statistical analyses, including the Mann-Kendall trend test, the Hurst exponent, and Pettitt test, to analyze the characteristics of temporal and spatial variation of vegetation coverage in the Xijiang River basin from 2000 to 2013.
View Article and Find Full Text PDFFront Plant Sci
February 2017
Water shortage in the arid-semiarid regions of China seriously hampers ecosystem construction. Therefore, elucidation of the mechanisms by which vegetation in that area responds to drought stress may enable us to improve utilization of limited water resources and thus contend with the problem of drought and water shortage. We studied , a native grass species, conducted potting control tests to compare several indicators of grown under three different moisture conditions (80%, 60%, 40% Field capacity represent sufficient water supply, mild water stress, and serious water stress, respectively).
View Article and Find Full Text PDFTumor necrosis factor superfamily-15 (TNFSF15; VEGI; TL1A) is a negative modulator of angiogenesis for blood vessel homeostasis and is produced by endothelial cells in a mature vasculature. It is known to be downregulated by vascular endothelial growth factor (VEGF), a major regulator of neovascularization but the mechanism of this interaction is unclear. Here we report that VEGF is able to stimulate the production of two microRNAs, miR-20a and miR-31, which directly target the 3'-UTR of TNFSF15.
View Article and Find Full Text PDFVascular endothelial cell growth factor (VEGF) plays a pivotal role in promoting neovascularization. VEGF gene expression in vascular endothelial cells in normal tissues is maintained at low levels but becomes highly up-regulated in a variety of disease settings including cancers. Tumor necrosis factor superfamily 15 (TNFSF15; VEGI; TL1A) is an anti-angiogenic cytokine prominently produced by endothelial cells in a normal vasculature.
View Article and Find Full Text PDFWater-use characteristics of plants are important for vegetation restoration in shallow earth-rock mountain area. In this study, soil and plant samples of Platycladus orientalis and corn were collected after rainfall events in Yingwugou watershed of Dan River to analyze the signatures of oxygen isotopes and the response of water use patterns to precipitation using stable isotope technology. The results showed that there were different response characteristics of the soil water utilization to precipitation between P.
View Article and Find Full Text PDFLymphangiogenesis is essential in embryonic development but is rare in adults. It occurs, however, in many disease conditions including cancers. Vascular endothelial growth factor-C/D (VEGF-C/D) and VEGF receptor-3 (Vegfr3) play a critical role in the regulation of lymphangiogenesis.
View Article and Find Full Text PDF