Publications by authors named "Guntram Paul"

Field isolates of foot-and-mouth disease viruses (FMDVs) utilize integrin-mediated cell entry but many, including Southern African Territories (SAT) viruses, are difficult to adapt to BHK-21 cells, thus hampering large-scale propagation of vaccine antigen. However, FMDVs acquire the ability to bind to cell surface heparan sulphate proteoglycans, following serial cytolytic infections in cell culture, likely by the selection of rapidly replicating FMDV variants. In this study, fourteen SAT1 and SAT2 viruses, serially passaged in BHK-21 cells, were virulent in CHO-K1 cells and displayed enhanced affinity for heparan, as opposed to their low-passage counterparts.

View Article and Find Full Text PDF

Virus capsids are primed for disassembly, yet capsid integrity is key to generating a protective immune response. Foot-and-mouth disease virus (FMDV) capsids comprise identical pentameric protein subunits held together by tenuous noncovalent interactions and are often unstable. Chemically inactivated or recombinant empty capsids, which could form the basis of future vaccines, are even less stable than live virus.

View Article and Find Full Text PDF

Foot-and-mouth disease viruses (FMDV) from serotype A exhibit high antigenic diversity. Within the Middle East, a strain called A-Iran-05 emerged in 2003, and subsequently replaced the A-Iran-96 and A-Iran-99 strains that were previously circulating in the region. Viruses from this strain did not serologically match with the established A/Iran/96 vaccine, although most early samples matched with the older A22/Iraq vaccine.

View Article and Find Full Text PDF

Background: Foot-and-mouth disease (FMD) vaccine potency testing involves hundreds of animals each year. Despite considerable efforts during the past decades, a challenge-free alternative vaccine potency test to replace the European protective dose 50% test (PD(50)) has not been implemented yet. The aim of the present study was to further characterize the properties of serological vaccine potency models.

View Article and Find Full Text PDF

By adapting a very virulent fowl adenovirus serotype 4 (FAdV-4) to a fibroblast cell line (QT35) instead of growing the virus in chicken embryo liver cells or chicken kidney cells, it was possible to attenuate the virus. Birds infected with the attenuated virus (FAdV-4/QT35) on the first day of life expressed no adverse clinical signs and no mortality. Intramuscular challenge with the virulent virus grown on chicken embryo liver cells (FAdV-4/CEL) at 21 days of life induced high mortality in previously nonvaccinated birds, whereas none of the birds vaccinated at 1 day old with FAdV-4/QT35 died due to this challenge.

View Article and Find Full Text PDF

Molecular imprinting techniques were adapted to design a sensor for the human rhinovirus (HRV) and the foot-and-mouth disease virus (FMDV), which are two representatives of picornaviruses. Stamp imprinting procedures lead to patterned polyurethane layers that depict the geometrical features of the template virus, as confirmed by AFM for HRV. Quartz crystal microbalance (QCM) measurements show that the resulting layers incorporate the template viruses reversibly and lead to mass effects that are almost an order of magnitude higher than those of nonspecific adsorption.

View Article and Find Full Text PDF

In The Netherlands between January 2002 and December 2004, numerous psittaciformes died showing severe splenomegaly and hepatomegaly with multifocal acute necrosis. At the start of the outbreaks mostly parakeets were affected, but later larger parrots were also involved. Seventy-eight birds showed the same features and six were examined completely, including a virological examination.

View Article and Find Full Text PDF

Avian polyomavirus (APV) is the causative agent of an acute fatal disease in psittacine and some non-psittacine birds. In contrast to mammalian polyomaviruses, the APV genome encodes the additional capsid protein VP4 and its variant VP4Delta, truncated by an internal deletion. Both proteins induce apoptosis.

View Article and Find Full Text PDF