Publications by authors named "Gunther Kletetschka"

Geophysics aims to locate bodies with varying density. We discovered an innovative approach for estimation of the location, in particular depth of a causative body, based on its relative horizontal dimensions, using a dimensionality indicator (I). The method divides the causative bodies into two types based on their horizontal spread: line of poles and point pole (LOP-PP) category, and line of poles and plane of poles (LOP-POP) category; such division allows for two distinct solutions.

View Article and Find Full Text PDF

The parent impact crater of Australasian tektites has not been discovered so far, but a consensus has been accepted on its location in a wider area of Indochina. Recently, an alternative location has been suggested in the Badain Jaran Desert (BJD), Northwest China. Employing gravity and magnetic data derived from satellites, possible presence of an impact structure in BJD is investigated.

View Article and Find Full Text PDF

We probe the gravitational properties of two neighboring planets, Earth and Venus. To justify a comparison between gravity models of the two planets, spherical harmonic series were considered up to a degree and order of 100. The topography and gravity aspects, including [Formula: see text] (vertical derivative of the vertical component of the gravity field), strike alignment (SA), comb factor (CF), and I invariant derived from the Marussi tensor, were calculated for the two planets at specifically selected zones that provided sufficient resolution.

View Article and Find Full Text PDF

Antarctic bottom water (AABW) production is a key factor governing global ocean circulation, and the present disintegration of the Antarctic Ice Sheet slows it. However, its long-term variability has not been well documented. On the basis of high-resolution chemical scanning of a well-dated marine ferromanganese nodule from the eastern Pacific, we derive a record of abyssal ventilation spanning the past 4.

View Article and Find Full Text PDF

Our Moon periodically moves through the magnetic tail of the Earth that contains terrestrial ions of hydrogen and oxygen. A possible density contrast might have been discovered that could be consistent with the presence of water phase of potential terrestrial origin. Using novel gravity aspects (descriptors) derived from harmonic potential coefficients of gravity field of the Moon, we discovered gravity strike angle anomalies that point to water phase locations in the polar regions of the Moon.

View Article and Find Full Text PDF

The shock exposure of the Santa Fe's impact structure in New Mexico is evidenced by large human-size shatter cones. We discovered a new magnetic mechanism that allows a magnetic detection of plasma's presence during the impact processes. Rock fragments from the impactites were once magnetized by a geomagnetic field.

View Article and Find Full Text PDF

We present evidence that in ~ 1650 BCE (~ 3600 years ago), a cosmic airburst destroyed Tall el-Hammam, a Middle-Bronze-Age city in the southern Jordan Valley northeast of the Dead Sea. The proposed airburst was larger than the 1908 explosion over Tunguska, Russia, where a ~ 50-m-wide bolide detonated with ~ 1000× more energy than the Hiroshima atomic bomb. A city-wide ~ 1.

View Article and Find Full Text PDF

Geomagnetic fields interfere with the accumulation of iron in the human brain. Magnetic sensing of the human brain provides compelling evidence of new electric mechanisms in human brains and may interfere with the evolution of neurodegenerative diseases. We revealed that the human brain may have a unique susceptibility to conduct electric currents as feedback of magnetic dipole fluctuation in superparamagnetic grains.

View Article and Find Full Text PDF

Chicxulub impact (66 Ma) event resulted in deposition of spheroids and melt glass, followed by deposition of diamectite and carbonate ejecta represented by large polished striated rounded pebbles and cobbles, henceforth, called Albion Formation Pook's Pebbles, name given from the first site identified in central Belize, Cayo District. Here we report that magnetic analysis of the Pook's Pebbles samples revealed unique electric discharge signatures. Sectioning of Pook's Pebbles from the Chicxulub ejecta from the Albion Formation at Belize showed that different parts of Pook's Pebbles had not only contrasting magnetization directions, but also sharply different level of magnetizations.

View Article and Find Full Text PDF

We provide arguments in favour of impact origin of a 200 km suspected impact crater Kotuykanskaya near Popigai, Siberia, Russia. We use the gravity aspects (gravity disturbances, the Marussi tensor of the second derivatives of the disturbing geopotential, the gravity invariants and their specific ratio, the strike angles and the virtual deformations), all derived from the combined static gravity field model EIGEN 6C4, with the ground resolution of about 10 km and a precision of about 10 milliGals. We also use the magnetic anomalies from the model EMAG2 and emphasize the evidence of much deeper sources in the suspected area, constraining the impact origin of this structure.

View Article and Find Full Text PDF
Article Synopsis
  • The Younger Dryas boundary layer at Abu Hureyra, Syria, is around 12,800 years old and contains high levels of meltglass, nanodiamonds, microspherules, and charcoal, indicating significant geological events.
  • The composition of the meltglass shows a mix of local sediment and meteoritic material, with evidence pointing to extremely high temperatures (up to 2200°C) during its formation, ruling out common sources like fires or lightning.
  • The findings suggest that a cosmic event may have impacted the area, aligning with similar high-temperature evidence found at other sites globally, linked to events occurring around the same time.
View Article and Find Full Text PDF

Multiwall carbon nanotubes (MWCNTs) fabricated by chemical vapor deposition contain magnetic nanoparticles. While increasing frequency of electromagnetic field (EMF) exposure (up to <10 kHz) of MWCNTs resulted in slight induced magnetization decrease due to skin effect of the conducting carbon, we discovered that higher frequencies (>10 kHz) contained an exponential magnetization increase. We show that puzzling magnetization increase with decreasing magnetic field amplitude (less than 0.

View Article and Find Full Text PDF

Multi-walled carbon nanotube (CNT) structures, including unidirectionally aligned sheets and spun yarns, were fabricated by direct dry-spinning methods from spinnable CNT arrays. We improved the mechanical properties of the CNT structures. CNTs were tailored in sheets and yarns using perfluorophenyl azide (PFPA) as a binding agent.

View Article and Find Full Text PDF

Three issues are critical for successful cryopreservation of multicellular material: gases dissolved in liquid, thermal conductivity of the tissue, and localization of microstructures. Here we show that heat distribution is controlled by the gas amount dissolved in liquids and that when changing the liquid into solid, the dissolved gases either form bubbles due to the absence of space in the lattice of solids and/or are migrated toward the concentrated salt and sugar solution at the cost of amount of heat required to be removed to complete a solid-state transition. These factors affect the heat distribution in the organs to be cryopreserved.

View Article and Find Full Text PDF

Pulses up to 11 Tesla magnetic fields may generate pockets of currents along the walls of cellular material and may interfere with the overall ability of cell division. We used prokaryotic cells (Escherichia coli) and eukaryotic cells (murine fibroblasts) and exposed them to magnetic pulses of intensities ranging from 1 millitesla (mT) to 11,000 mT. We found prokaryotic cells to be more sensitive to magnetic field pulses than eukaryotic cells.

View Article and Find Full Text PDF

Airbursts/impacts by a fragmented comet or asteroid have been proposed at the Younger Dryas onset (12.80 ± 0.15 ka) based on identification of an assemblage of impact-related proxies, including microspherules, nanodiamonds, and iridium.

View Article and Find Full Text PDF

It has been proposed that fragments of an asteroid or comet impacted Earth, deposited silica- and iron-rich microspherules and other proxies across several continents, and triggered the Younger Dryas cooling episode 12,900 years ago. Although many independent groups have confirmed the impact evidence, the hypothesis remains controversial because some groups have failed to do so. We examined sediment sequences from 18 dated Younger Dryas boundary (YDB) sites across three continents (North America, Europe, and Asia), spanning 12,000 km around nearly one-third of the planet.

View Article and Find Full Text PDF

A magnetic signature of tree rings was tested as a potential paleo-climatic indicator. We examined wood from sequoia tree, located in Mountain Home State Forest, California, whose tree ring record spans over the period 600 - 1700 A.D.

View Article and Find Full Text PDF

Normal somatic cells have a finite replicative capacity, and with each cell division telomeres progressively shorten, unless the telomerase enzyme is present. The bristlecone pine, Pinus longaeva, is the oldest known living eukaryotic organism, with the oldest on record turning 4770 years old in 2005. The results from our study of telomere length and telomerase activity in samples (needle, root, core) from P.

View Article and Find Full Text PDF