IEEE Trans Vis Comput Graph
September 2024
Contour trees describe the topology of level sets in scalar fields and are widely used in topological data analysis and visualization. A main challenge of utilizing contour trees for large-scale scientific data is their computation at scale using highperformance computing. To address this challenge, recent work has introduced distributed hierarchical contour trees for distributed computation and storage of contour trees.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
January 2024
Over the last decade merge trees have been proven to support a plethora of visualization and analysis tasks since they effectively abstract complex datasets. This paper describes the ExTreeM-Algorithm: A scalable algorithm for the computation of merge trees via extremum graphs. The core idea of ExTreeM is to first derive the extremum graph G of an input scalar field f defined on a cell complex K, and subsequently compute the unaugmented merge tree of f on G instead of K; which are equivalent.
View Article and Find Full Text PDFPhase-contrast transmission electron microscopy (TEM) is a powerful tool for imaging the local atomic structure of materials. TEM has been used heavily in studies of defect structures of two-dimensional materials such as monolayer graphene due to its high dose efficiency. However, phase-contrast imaging can produce complex nonlinear contrast, even for weakly scattering samples.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
October 2022
Contour trees are used for topological data analysis in scientific visualization. While originally computed with serial algorithms, recent work has introduced a vector-parallel algorithm. However, this algorithm is relatively slow for fully augmented contour trees which are needed for many practical data analysis tasks.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
April 2021
As data sets grow to exascale, automated data analysis and visualization are increasingly important, to intermediate human understanding and to reduce demands on disk storage via in situ analysis. Trends in architecture of high performance computing systems necessitate analysis algorithms to make effective use of combinations of massively multicore and distributed systems. One of the principal analytic tools is the contour tree, which analyses relationships between contours to identify features of more than local importance.
View Article and Find Full Text PDFThis work describes an approach for the interactive visual analysis of large-scale simulations, where numerous superlevel set components and their evolution are of primary interest. The approach first derives, at simulation runtime, a specialized Cinema database that consists of images of component groups, and topological abstractions. This database is processed by a novel graph operation-based nested tracking graph algorithm (GO-NTG) that dynamically computes NTGs for component groups based on size, overlap, persistence, and level thresholds.
View Article and Find Full Text PDFBackground: There exists a need for effective and easy-to-use software tools supporting the analysis of complex Electrocorticography (ECoG) data. Understanding how epileptic seizures develop or identifying diagnostic indicators for neurological diseases require the in-depth analysis of neural activity data from ECoG. Such data is multi-scale and is of high spatio-temporal resolution.
View Article and Find Full Text PDFIEEE Comput Graph Appl
January 2019
Application-oriented papers provide an important way to invigorate and cross-pollinate the visualization field, but the exact criteria for judging an application paper's merit remain an open question. This article builds on a panel at the 2016 IEEE Visualization Conference entitled "Application Papers: What Are They, and How Should They Be Evaluated?" that sought to gain a better understanding of prevalent views in the visualization community. This article surveys current trends that favor application papers, reviews the benefits and contributions of this paper type, and discusses their assessment in the review process.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
May 2016
We present Brain Modulyzer, an interactive visual exploration tool for functional magnetic resonance imaging (fMRI) brain scans, aimed at analyzing the correlation between different brain regions when resting or when performing mental tasks. Brain Modulyzer combines multiple coordinated views-such as heat maps, node link diagrams and anatomical views-using brushing and linking to provide an anatomical context for brain connectivity data. Integrating methods from graph theory and analysis, e.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
March 2013
Analyzing high-dimensional point clouds is a classical challenge in visual analytics. Traditional techniques, such as projections or axis-based techniques, suffer from projection artifacts, occlusion, and visual complexity. We propose to split data analysis into two parts to address these shortcomings.
View Article and Find Full Text PDFIEEE Comput Graph Appl
October 2010
This article presents the results of experiments studying how the pure-parallelism paradigm scales to massive data sets, including 16,000 or more cores on trillion-cell meshes, the largest data sets published to date in the visualization literature. The findings on scaling characteristics and bottlenecks contribute to understanding how pure parallelism will perform in the future.
View Article and Find Full Text PDFKnowledge discovery from large and complex scientific data is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the growing number of data dimensions and data objects presents tremendous challenges for effective data analysis and data exploration methods and tools. The combination and close integration of methods from scientific visualization, information visualization, automated data analysis, and other enabling technologies -such as efficient data management- supports knowledge discovery from multi-dimensional scientific data.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
May 2010
The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex data sets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
April 2010
This paper presents topology-based methods to robustly extract, analyze, and track features defined as subsets of isosurfaces. First, we demonstrate how features identified by thresholding isosurfaces can be defined in terms of the Morse complex. Second, we present a specialized hierarchy that encodes the feature segmentation independent of the threshold while still providing a flexible multiresolution representation.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
August 2009
During animal development, complex patterns of gene expression provide positional information within the embryo. To better understand the underlying gene regulatory networks, the Berkeley Drosophila Transcription Network Project (BDTNP) has developed methods that support quantitative computational analysis of three-dimensional (3D) gene expression in early Drosophila embryos at cellular resolution. We introduce PointCloudXplore (PCX), an interactive visualization tool that supports visual exploration of relationships between different genes' expression using a combination of established visualization techniques.
View Article and Find Full Text PDFTo fully understand animal transcription networks, it is essential to accurately measure the spatial and temporal expression patterns of transcription factors and their targets. We describe a registration technique that takes image-based data from hundreds of Drosophila blastoderm embryos, each costained for a reference gene and one of a set of genes of interest, and builds a model VirtualEmbryo. This model captures in a common framework the average expression patterns for many genes in spite of significant variation in morphology and expression between individual embryos.
View Article and Find Full Text PDFBackground: Applications in biomedical science and life science produce large data sets using increasingly powerful imaging devices and computer simulations. It is becoming increasingly difficult for scientists to explore and analyze these data using traditional tools. Interactive data processing and visualization tools can support scientists to overcome these limitations.
View Article and Find Full Text PDFTopology provides a foundation for the development of mathematically sound tools for processing and exploration of scalar fields. Existing topology-based methods can be used to identify interesting features in volumetric data sets, to find seed sets for accelerated isosurface extraction, or to treat individual connected components as distinct entities for isosurfacing or interval volume rendering. We describe a framework for direct volume rendering based on segmenting a volume into regions of equivalent contour topology and applying separate transfer functions to each region.
View Article and Find Full Text PDFBackground: To model and thoroughly understand animal transcription networks, it is essential to derive accurate spatial and temporal descriptions of developing gene expression patterns with cellular resolution.
Results: Here we describe a suite of methods that provide the first quantitative three-dimensional description of gene expression and morphology at cellular resolution in whole embryos. A database containing information derived from 1,282 embryos is released that describes the mRNA expression of 22 genes at multiple time points in the Drosophila blastoderm.