Cancers are heterogeneous and genetically unstable. Current practice of personalized medicine tailors therapy to heterogeneity between cancers of the same organ type. However, it does not yet systematically address heterogeneity at the single-cell level within a single individual's cancer or the dynamic nature of cancer due to genetic and epigenetic change as well as transient functional changes.
View Article and Find Full Text PDFHigh-density single nucleotide polymorphism (SNP) mapping arrays have identified chromosomal features whose importance to cancer predisposition and progression is not yet clearly defined. Of interest is that the genomes of normal somatic cells (reflecting the combined parental germ-line contributions) often contain long homozygous stretches. These chromosomal segments may be explained by the common ancestry of the individual's parents and thus may also be called autozygous.
View Article and Find Full Text PDFPrevious studies have shown that among populations with a high rate of consanguinity, there is a significant increase in the prevalence of cancer. Single nucleotide polymorphism (SNP) array data (Affymetrix, 50K XbaI) analysis revealed long regions of homozygosity in genomic DNAs taken from tumor and matched normal tissues of colorectal cancer (CRC) patients. The presence of these regions in the genome may indicate levels of consanguinity in the individual's family lineage.
View Article and Find Full Text PDF