Publications by authors named "Gunter Rappl"

Article Synopsis
  • In squamous cell carcinoma of the lung (LUSC), fewer targetable genetic alterations exist compared to lung adenocarcinoma (LUAD), prompting a study to analyze recurrent gene fusions in LUSC cases.
  • A total of 1608 LUSC samples were examined using targeted next-generation sequencing, resulting in the discovery of gene fusions in about 3% of the cases, including known fusions like ALK::EML4 and new fusions like EGFR::VSTM2A.
  • The study found that many LUSC patients have unstable genomes, suggesting that these gene fusions may not be the main drivers of cancer and caution is needed when interpreting new fusions in the context of
View Article and Find Full Text PDF

Mutations in genes encoding molecular chaperones can lead to chaperonopathies, but none have so far been identified causing congenital disorders of glycosylation. Here we identified two maternal half-brothers with a novel chaperonopathy, causing impaired protein O-glycosylation. The patients have a decreased activity of T-synthase (), an enzyme that exclusively synthesizes the T-antigen, a ubiquitous O-glycan core structure and precursor for all extended O-glycans.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-redirected T cell therapy often fails to control tumors in the long term due to selecting cancer cells that downregulated or lost CAR targeted antigen. To reprogram the functional capacities specifically of engineered CAR T cells, we inserted IL12 into the extracellular moiety of a CD28-ζ CAR; both the CAR endodomain and IL12 were functionally active, as indicated by antigen-redirected effector functions and STAT4 phosphorylation, respectively. The IL12-CAR reprogrammed CD8 T cells toward a so far not recognized natural killer (NK) cell-like signature and a CD94CD56CD62L phenotype closely similar, but not identical, to NK and cytokine induced killer (CIK) cells.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-engineered T cells are efficacious in controlling advanced leukemia and lymphoma, however, they fail in the treatment of solid cancer, which is thought to be due to insufficient T cell activation. We revealed that the immune response of CAR T cells with specificity for carcinoembryonic antigen (CEA) was more efficacious against CEA cancer cells when simultaneously incubated with an anti-CD30 immunotoxin or anti-CD30 CAR T cells, although the targeted cancer cells lack CD30. The same effect was achieved when the anti-CD30 single-chain variable fragment (scFv) was integrated into the extracellular domain of the anti-CEA CAR.

View Article and Find Full Text PDF

Little is known on the causes and pathogenesis of the adipose tissue disorder (familial) Multiple Symmetric Lipomatosis (MSL). In a four-generation MSL-family, we performed whole exome sequencing (WES) in 3 affected individuals and 1 obligate carrier and identified Calcyphosine-like (CAPSL) as the most promising candidate gene for this family. Screening of 21 independent patients excluded CAPSL coding sequence variants as a common monogenic cause, but using immunohistochemistry we found that CAPSL was down-regulated in adipose tissue not only from the index patient but also in 10 independent sporadic MSL-patients.

View Article and Find Full Text PDF

Earlier it was shown that number of retrieved follicles was significantly higher in Tumor Dissociation Enzyme (TDE)-treatment group compare to standard Liberase TM-group. The aim of our present investigations was to examine the effect of TDE on appearance of apoptosis and necrosis in follicles and stromal cells after digesting of cryopreserved ovarian cortex. Fresh and frozen ovarian cortex fragments (OCF) from 14 patients (29 ± 6 years old), sized 20-210 mm were randomly distributed into four treatment groups and digested with 16% TDE or 0.

View Article and Find Full Text PDF

Background: The aim of this study was to examine the effectiveness of Tumor Dissociation Enzyme (TDE) on the viability of follicles after digestion of fresh and cryopreserved ovarian cortex fragments (OCFs).

Methods: Fresh and thawed OCF from 14 patients (29 ± 6 years), sized 20 to 210 mm were randomly distributed into four treatment groups and digested with 16% TDE or 0.05 mg/ml Liberase TM: Group 1, frozen OCF digested with TDE; Group 2, frozen OCF digested with LiberaseTM; Group 3, fresh OCF digested with TDE; and Group 4, fresh OCF digested with Liberase TM.

View Article and Find Full Text PDF

After skin injury fibroblasts migrate into the wound and transform into contractile, extracellular matrix-producing myofibroblasts to promote skin repair. Persistent activation of myofibroblasts can cause excessive fibrotic reactions, but the underlying mechanisms are not fully understood. We used SMA-GFP transgenic mice to study myofibroblast recruitment and activation in skin wounds.

View Article and Find Full Text PDF

Deficiency of the extracellular matrix protein latent transforming growth factor-β (TGF-β)-binding protein-4 (LTBP4) results in lack of intact elastic fibers, which leads to disturbed pulmonary development and lack of normal alveolarization in humans and mice. Formation of alveoli and alveolar septation in pulmonary development requires the concerted interaction of extracellular matrix proteins, growth factors such as TGF-β, fibroblasts, and myofibroblasts to promote elastogenesis as well as vascular formation in the alveolar septae. To investigate the role of LTBP4 in this context, lungs of LTBP4-deficient () mice were analyzed in close detail.

View Article and Find Full Text PDF

Low-grade inflammation links obesity to insulin resistance through the activation of tissue-infiltrating immune cells. Interleukin-6 (IL-6) is a crucial regulator of T cells and is increased in obesity. Here we report that classical IL-6 signalling in T cells promotes inflammation and insulin resistance during the first 8 weeks on a high-fat diet (HFD), but becomes dispensable at later stages (after 16 weeks).

View Article and Find Full Text PDF

Traditionally, B cells have been best known for their role as producers of antibodies. However, in recent years, a growing body of evidence has accumulated showing that B cells fulfill a range of other immunologic functions. One of the functions that has attracted increasing attention is the capacity of B cells to induce antigen-specific activation of T cells through presentation of antigens.

View Article and Find Full Text PDF

Mitochondria form a dynamic network within the cell as a result of balanced fusion and fission. Despite the established role of mitofusins (MFN1 and MFN2) in mitochondrial fusion, only MFN2 has been associated with metabolic and neurodegenerative diseases, which suggests that MFN2 is needed to maintain mitochondrial energy metabolism. The molecular basis for the mitochondrial dysfunction encountered in the absence of MFN2 is not understood.

View Article and Find Full Text PDF

Cytokine-induced killer (CIK) cells raised interest for use in cellular antitumor therapy due to their capability to recognize and destroy autologous tumor cells in a HLA-independent fashion. The antitumor attack of CIK cells, predominantly consisting of terminally differentiated CD8(+)CD56(+) cells, can be improved by redirecting by a chimeric antigen receptor (CAR) that recognizes the tumor cell and triggers CIK cell activation. The requirements for CIK cell activation were, however, so far less explored and are likely to be different from those of "younger" T cells.

View Article and Find Full Text PDF

Adoptive therapy of cancer with genetically redirected T cells showed spectacular efficacy in recent trials. A body of preclinical and clinical data indicate that young effector and central memory T cells perform superior in a primary antitumor response; repetitive antigen engagement, however, drives T-cell maturation to terminally differentiated cells associated with the loss of CCR7, which enables T cells to persist in peripheral tissues. In this work, we explored the antitumor efficacy of CCR7(-) T cells when redirected in an antigen-dependent fashion by a chimeric antigen receptor (CAR) toward tumors in the periphery.

View Article and Find Full Text PDF

Skin injury induces the formation of new blood vessels by activating the vasculature in order to restore tissue homeostasis. Vascular cells may also differentiate into matrix-secreting contractile myofibroblasts to promote wound closure. Here, we characterize a PECAM1(+)/Sca1(+) vascular cell population in mouse skin, which is highly enriched in wounds at the peak of neoangiogenesis and myofibroblast formation.

View Article and Find Full Text PDF

Background & Aims: New treatment approaches are needed for patients with pancreatic adenocarcinoma. Carcinoembryonic antigen (CEA) is highly expressed on the surface of pancreatic adenocarcinoma cells; we investigated the effects of cytolytic T cells that recognize CEA in a mouse model of pancreatic carcinoma.

Methods: Immune-competent mice that expressed the CEA transgene (CEAtg) in the intestinal and pulmonary tracts were given intrapancreatic injections of Panc02 CEA(+) cells (express CEA and click beetle luciferase) and tumors were grown for 10 days.

View Article and Find Full Text PDF

Numerous biochemical studies have pointed to an essential role of annexin A5 (AnxA5), annexin A6 (AnxA6), and collagen X in matrix vesicle-mediated biomineralization during endochondral ossification and in osteoarthritis. By binding to the extracellular matrix protein collagen X and matrix vesicles, annexins were proposed to anchor matrix vesicles in the extracellular space of hypertrophic chondrocytes to initiate the calcification of cartilage. However, mineralization appears to be normal in mice lacking AnxA5 and AnxA6, whereas collagen X-deficient mice show only subtle alterations in the growth plate organization.

View Article and Find Full Text PDF

The "two-signal paradigm" in T cell activation predicts that the cooperation of "signal 1," provided by the T cell receptor (TCR) through engagement of major histocompatility complex (MHC)-presented peptide, with "signal 2″ provided by costimulatory molecules, the prototype of which is CD28, is required to induce T cell effector functions. While the individual signalling pathways are well understood, little is known about global changes in the proteome pattern during TCR/CD28-mediated activation. Therefore, comparative 2-DE-based proteome analyses of CD3(+) CD69(-) resting T cells versus cells incubated with (i) the agonistic anti-CD3 antibody OKT3 mimicking signal 1 in absence or presence of IL-2 and/or with (ii) the agonistic antibody 15E8 triggering CD28-mediated signaling were performed.

View Article and Find Full Text PDF

Adoptive therapy of malignant diseases with tumor-specific cytotoxic T cells showed remarkable efficacy in recent trials. Repetitive T cell receptor (TCR) engagement of target antigen, however, inevitably ends up in hypo-responsive cells with terminally differentiated KLRG-1(+) CD57(+) CD7(-) phenotype limiting their therapeutic efficacy. We here revealed that hypo-responsiveness of CMV-specific late-stage CD8(+) T cells is due to reduced TCR synapse formation compared to younger cells.

View Article and Find Full Text PDF

Mammalian epidermis consists of the interfollicular epidermis, hair follicles (HFs) and associated sebaceous glands (SGs). It is constantly renewed by stem and progenitor cell populations that have been identified and each compartment features a distinct mechanism of cellular turnover during renewal. The functional relationship between the diverse stem cell (SC) pools is not known and molecular signals regulating the establishment and maintenance of SC compartments are not well understood.

View Article and Find Full Text PDF

Sarcoidosis can evolve into a chronic disease with persistent granulomas accompanied by progressive fibrosis. While an unlimited inflammatory response suggests an impaired immune control in sarcoid lesions, it stands in contrast to the massive infiltration with CD4(+)CD25(high)FoxP3(+) regulatory T cells. We here revealed that those Treg cells in affected lung lesions were mainly derived from activated natural Treg cells with GARP (LRRC32)-positive phenotype but exhibited reduced repressor capacities despite high IL-10 and TGF-beta 1 levels.

View Article and Find Full Text PDF

Adoptive T-cell transfer showed promising efficacy in recent trials raising interest in T cells with redirected specificity against tumors. T cells were engineered with a chimeric antigen receptor (CAR) with predefined binding and CD3ζ signaling to initiate T-cell activation. CD28 costimulation provided by a CD28-CD3ζ signaling CAR moreover improved T cell activation and persistence; however, it failed to meet the expectations with respect to mounting attacks against solid tumors infiltrated with regulatory T (Treg) cells.

View Article and Find Full Text PDF

Objective: Bone marrow-derived CD34(+) cells are currently used in clinical trials in patients with ischemic heart disease. An option to enhance activity of injected progenitors may be offered by genetic engineering of progenitor cells with angiogenic growth factors. Recombinant adeno-associated viral vectors (rAAV) have emerged as a leading gene transfer systems.

View Article and Find Full Text PDF

Repetitive antigen encounters together with a strong CD28 co-stimulatory signal were recently identified as driving extensive amplification of human regulatory T (Treg) cells; however, the consequences of this on the functional capacities of Treg cells remain unknown. In this report, we reveal that T cell receptor (TCR)/CD28-triggered amplification in vitro converts CD4+CD25(high)FoxP3+ Treg cells into a late memory phenotype associated with immunosenescence and loss of CD7. Accordingly, ex vivo-isolated CD7- Treg cells have shortened telomeres and decreased telomerase expression compared to the majority of "mature" CD7+ Treg cells.

View Article and Find Full Text PDF