Publications by authors named "Gunsung Kim"

Optical endoscopic imaging, which was recently equipped with bioluminescence, fluorescence, and Raman scattering, allows minimally invasive real-time detection of pathologies on the surface of hollow organs. To characterize pathologic lesions in a multiplexed way, we developed a dual modal fluorescence-Raman endomicroscopic system (FRES), which used fluorescence and surface-enhanced Raman scattering nanoprobes (F-SERS dots). Real-time, in vivo, and multiple target detection of a specific cancer was successful, based on the fast imaging capability of fluorescence signals and the multiplex capability of simultaneously detected SERS signals using an optical fiber bundle for intraoperative endoscopic system.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) techniques offer a number of advantages in molecular detection and analysis, particularly in terms of the multiplex detection of biomolecules. So far, many new SERS-based substrates and analytical techniques have been reported. For easy understanding, various SERS techniques are classified into the following four categories: adsorption-mediated direct detection; antibody- or ligand-mediated direct detection; binding catalyzed indirect detection; and tag-based indirect detection.

View Article and Find Full Text PDF

A molecular detection method utilizing the magnetically induced aggregation of silver nanoparticle (NP)-embedded silica NPs for SERS activation is described. Here, silver embedded magnetic NPs (Ag-M-dots) composed of a magnetic core and silica shells, on whose surface silver NPs were formed, were used. Because the magnetic field induced aggregated Ag-M-dots exhibit a strong SERS signal compared to the dispersed Ag-M-dots, the system allows for the detection of adsorbed Raman label compound even at the 100 fM level.

View Article and Find Full Text PDF

In this study, surface-enhanced Raman spectroscopy (SERS)-encoded magnetic nanoparticles (NPs) are prepared and utilized as a multifunctional tagging material for cancer-cell targeting and separation. First, silver-embedded magnetic NPs are prepared, composed of an 18-nm magnetic core and a 16-nm-thick silica shell with silver NPs formed on the surface. After simple aromatic compounds are adsorbed on the silver-embedded magnetic NPs, they are coated with silica to provide them with chemical and physical stability.

View Article and Find Full Text PDF

This article presents a prototype of a surface-enhanced Raman spectroscopy (SERS)-encoded magnetic bead of 8mum diameter. The core part of the bead is composed of a magnetic nanoparticle (NP)-embedded sulfonated polystyrene bead. The outer part of the bead is embedded with Ag NPs on which labeling molecules generating specific SERS bands are adsorbed.

View Article and Find Full Text PDF

Immunoassays using nanomaterials have been rapidly developed for the analysis of multiple biomolecules. Highly sensitive and biocompatible surface enhanced Raman spectroscopy-active nanomaterials have been used for biomolecule analysis by many research groups in order to overcome intrinsic problems of conventional immunoassays. We used fluorescent surface-enhanced Raman spectroscopic dots (F-SERS dots) to detect biomolecules in this study.

View Article and Find Full Text PDF