Publications by authors named "Guns S"

Article Synopsis
  • Scientists studied the kinematic Sunyaev-Zel'dovich (kSZ) effect using data from two telescopes, the South Pole Telescope and Herschel-SPIRE, covering a large area in the sky.
  • They found a strong signal indicating that there is a trispectrum, which is a kind of pattern in the data, but it had contributions from other sources too, like cosmic microwave background lensing and foregrounds.
  • By analyzing the data, they couldn't find just the kSZ signal alone, but they set limits on how long the reionization period lasted in the early universe, which helps us understand its history better.
View Article and Find Full Text PDF

We present two prescriptions for broadband ($ {\sim} 77 - 252\;{\rm GHz} $), millimeter-wave antireflection coatings for cryogenic, sintered polycrystalline aluminum oxide optics: one for large-format (700 mm diameter) planar and plano-convex elements, the other for densely packed arrays of quasi-optical elements-in our case, 5 mm diameter half-spheres (called "lenslets"). The coatings comprise three layers of commercially available, polytetrafluoroethylene-based, dielectric sheet material. The lenslet coating is molded to fit the 150 mm diameter arrays directly, while the large-diameter lenses are coated using a tiled approach.

View Article and Find Full Text PDF

The use of hot-melt extrusion for preparing homogeneous API-excipient mixtures is studied for miconazole-PEG-g-PVA [poly(ethylene glycol)-poly(vinyl alcohol) graft copolymer] solid dispersions with a 5 cm(3) table-top, twin-screw corotating microcompounder (DSM Xplore). Phase behavior of PEG-g-PVA, miscibility of miconazole in PEG-g-PVA and the partitioning of miconazole between PEG and PVA amorphous phases are characterized using a combination of modulated DSC, XRPD, and solid-state (1)H and (13)C NMR methods. The (1)H NMR transverse magnetization relaxation (T(2) relaxation) method is used to analyze the phase composition and molecular mobility of the copolymer.

View Article and Find Full Text PDF

Spray drying is an efficient technology for solid dispersion manufacturing since it allows extreme rapid solvent evaporation leading to fast transformation of an API-carrier solution to solid API-carrier particles. Solvent evaporation kinetics certainly contribute to formation of amorphous solid dispersions, but also other factors like the interplay between the API, carrier and solvent, the solution state of the API, formulation parameters (e.g.

View Article and Find Full Text PDF

Since only limited amount of drug is available in early development stages, the extruder design has evolved towards smaller batch sizes, with a more simple design. An in dept study about the consequences of the differences in design is mandatory and little can be found in literature. Miconazole and Kollicoat IR were used as model drug and carrier for this study.

View Article and Find Full Text PDF

Purpose: To investigate the effect of the manufacturing method (spray-drying or hot-melt extrusion) on the kinetic miscibility of miconazole and the graft copolymer poly(ethyleneglycol-g-vinylalcohol). The effect of heat pre-treatment of solutions used for spray-drying and the use of spray-dried copolymer as excipient for hot-melt extrusion was investigated.

Method: The solid dispersions were prepared at different drug-polymer ratios and analyzed with modulated differential scanning calorimetry and X-ray powder diffraction.

View Article and Find Full Text PDF

In order to fully exploit the graft copolymer poly(ethyleneglycol-g-vinylalcohol) (EG/VA) in the formulation of solid dispersions, a characterization of its phase behavior before, during and after spray-drying and hot-melt extrusion is performed. Solid state characterization was performed using MDSC and XRPD. The effect of heating/cooling rate on the degree of crystallinity was studied using HPer DSC and ultra-fast chip calorimetry.

View Article and Find Full Text PDF