Handling of digestate produced by anaerobic digestion impacts the environment through emission of greenhouse gases, reactive nitrogen, and phosphorus. Previous life cycle assessments (LCA) evaluating the extraction of nutrients from digestate using struvite precipitation and ammonia stripping did not relate synthetic fertilizer substitution (SFS) to nutrient use efficiency consequences. We applied an expanded LCA to compare the conventional management of 1 m of liquid digestate (LD) from food waste against the production and use of digestate biofertilizer (DBF) extracted from LD, accounting for SFS efficacy.
View Article and Find Full Text PDFNitrogen (N) is often considered to be the major factor limiting tree growth in northern forest ecosystems. An increased N availability, however, increases the demand for other nutrients such as base cations and phosphorous (P) which in turn may change which nutrient is the limiting factor. If P or base cations become limiting, N will start to leach which means a risk of increased eutrophication of surface waters.
View Article and Find Full Text PDFBefore wood ash can be used as a soil fertilizer, concentrations of environmentally hazardous compounds must be investigated. In this study, total and leachable concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in four ash samples and one green liquor sludge. The ash sample with the highest carbon content also contained high levels of PAHs; three of the ash samples had total concentrations exceeding the limit permitted by the Swedish Forest Agency for recycling to forest soils.
View Article and Find Full Text PDFThirty-two Norway spruce [Picea abies (L.) Karst.] and Scots pine (Pinus sylvestris L.
View Article and Find Full Text PDF