We report an all-fiber Er/Yb master oscillator power amplifier at 1.55 μm, delivering 135 μJ pulses with 6 ns duration (full width at half-maximum) at 100 kHz pulse repetition frequency, limited by stimulated Brillouin scattering. The output contains <1% amplified spontaneous emission and has a beam quality of M=1.
View Article and Find Full Text PDFA new method to obtain a narrow and symmetrical far field from a high-pulse-energy optical parametric oscillator (OPO) with a linear resonator has been tested. The OPO employs two identical nonlinear crystals that are cut for type II phase matching, rotated such that their walk-off planes are orthogonal, and separated by a broadband half-wave plate. The OPO has a simple geometry, can be double-pass pumped, is wavelength tunable and operates stably with high conversion efficiency.
View Article and Find Full Text PDFStandoff detection measuring the fluorescence spectra of seven different biological agents excited by 294 nm as well as 355 nm wavelength laser pulses has been undertaken. The biological warfare agent simulants were released in a semi-closed aerosol chamber at 210 m standoff distance and excited by light at either of the two wavelengths using the same instrument. Significant differences in several of the agents' fluorescence response were seen at the two wavelengths.
View Article and Find Full Text PDFAbsorption at the idler wavelength in an optical parametric oscillator (OPO) is often considered detrimental. We show through simulations that pulsed OPOs with significant idler absorption can perform better than OPOs with low idler absorption both in terms of conversion efficiency and beam quality. The main reason for this is reduced back conversion.
View Article and Find Full Text PDFWe demonstrate with simulations and experiments that an optical parametric oscillator using two different crystals with orthogonal walk-off planes can generate a symmetric, high-quality beam even if the resonator has a high Fresnel number. In the experiments we used KTA and BBO crystals to convert 5 ns pulses at 1.06 microm to 1.
View Article and Find Full Text PDFNonlinear optical conversion of 1.064 microm pulses from a Q-switched Nd:YAG laser to the mid-infrared is demonstrated. The experimental setup is based on a two-stage master-oscillator/power-amplifier (MOPA) design with a KTiOPO(4) based MOPA in the first stage and a KTiOAsO(4)/ZnGeP(2) based MOPA in the second stage.
View Article and Find Full Text PDFA high power, efficient, and tunable laser source in the 8-10 microm range, based on a ZnGeP(2) optical parametric oscillator (OPO) pumped by a hybrid 2.1 microm laser is demonstrated. The hybrid laser consists of a Q-switched Ho:YAG laser pumped by a 15 W CW thulium fiber laser.
View Article and Find Full Text PDFA simple scheme for generation of high power in the midinfrared is demonstrated. By using a 15 W thulium-doped fiber laser emitting at 1907 nm to pump a Q-switched Ho:YAG laser, we obtained 9.8 W at 2096 nm at a 20 kHz pulse repetition rate with excellent beam quality.
View Article and Find Full Text PDFWe describe a system for parametric conversion of high-energy,Q-switched laser pulses from 1.064 microm to 2.1 microm in KTiOPO(4).
View Article and Find Full Text PDF