Publications by authors named "Gunnar Lindeberg"

Rigidification of the isobutyl side chain of drug-like AT receptor agonists and antagonists that are structurally related to the first reported selective AT receptor agonist 1 (C21) delivered bioactive indane derivatives. Four enantiomer pairs were synthesized and the enantiomers were isolated in an optical purity >99%. The enantiomers , , , , , , and bind to the AT receptor with moderate ( = 54-223 nM) to high affinity ( = 2.

View Article and Find Full Text PDF

Substance P 1-7 (SP, Arg-Pro-Lys-Pro-Gln-Gln-Phe) is the major bioactive metabolite formed after proteolytic degradation of the tachykinin substance P (SP). This heptapeptide often opposes the effects of the mother peptide. Hence, SP is having anti-inflammatory, anti-nociceptive and anti-hyperalgesic effects in experimental models.

View Article and Find Full Text PDF

The heptapeptide SP (1, Arg-Pro-Lys-Pro-Gln-Gln-Phe) is the major bioactive metabolite formed after proteolytic processing of the neuropeptide substance P (SP, Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH). The heptapeptide 1 frequently exhibits opposite effects to those induced by SP, such as exerting antinociception, or attenuating thermal hyperalgesia and mechanical allodynia. The heptapeptide SP amide (2, Arg-Pro-Lys-Pro-Gln-Gln-Phe-NH) is often more efficacious than 1 in experimental pain models.

View Article and Find Full Text PDF

Bombesin (BN) analogs bind with high affinity to gastrin-releasing peptide receptors (GRPRs) that are up-regulated in prostate cancer and can be used for the visualization of prostate cancer. The aim of this study was to investigate the influence of radionuclide-chelator complexes on the biodistribution pattern of the 111In-labeled bombesin antagonist PEG2-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 (PEG2-RM26) and to identify an optimal construct for SPECT imaging. A series of RM26 analogs N-terminally conjugated with NOTA, NODAGA, DOTA and DOTAGA via a PEG2 spacer were radiolabeled with 111In and evaluated both in vitro and in vivo.

View Article and Find Full Text PDF

Introduction: Overexpression of gastrin-releasing peptide receptors (GRPR) has been reported in several cancers. Bombesin (BN) analogs are short peptides with a high affinity for GRPR. Different BN analogs were evaluated for radionuclide imaging and therapy of GRPR-expressing tumors.

View Article and Find Full Text PDF

The overexpression of gastrin-releasing peptide receptor (GRPR) in cancer can be used for peptide-receptor mediated radionuclide imaging and therapy. We have previously shown that an antagonist analog of bombesin RM26 conjugated to 1,4,7-triazacyclononane-N,N',N''-triacetic acid (NOTA) via a diethyleneglycol (PEG2) spacer (NOTA-PEG2-RM26) and labeled with 68Ga can be used for imaging of GRPR-expressing tumors. In this study, we evaluated if a variation of mini-PEG spacer length can be used for optimization of targeting properties of the NOTA-conjugated RM26.

View Article and Find Full Text PDF

Herein, novel hepatitis C virus NS3/4A protease inhibitors based on a P2 pyrimidinyloxyphenylglycine in combination with various regioisomers of an aryl acyl sulfonamide functionality in P1 are presented. The P1' 4-(trifluoromethyl)phenyl side chain was shown to be particularly beneficial in terms of inhibitory potency. Several inhibitors with K i-values in the nanomolar range were developed and included identification of promising P3-truncated inhibitors spanning from P2-P1'.

View Article and Find Full Text PDF

Expression of the gastrin-releasing peptide receptor (GRPR) in prostate cancer suggests that this receptor can be used as a potential molecular target to visualize and treat these tumors. We have previously investigated an antagonist analog of bombesin (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2, RM26) conjugated to 1,4,7-triazacyclononane-N,N',N''-triacetic acid (NOTA) via a diethylene glycol (PEG2) spacer (NOTA-P2-RM26) labeled with (68)Ga and (111)In. We found that this conjugate has favorable properties for in vivo imaging of GRPR-expression.

View Article and Find Full Text PDF

The gastrin-releasing peptide receptor (GRPR/BB2) is a molecular target for the visualization of prostate cancer. This work focused on the development of high-affinity, hydrophilic, antagonistic, bombesin-based imaging agents for PET and SPECT. The bombesin antagonist analog d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 ([d-Phe(6),Sta(13),Leu(14)]bombesin[6-14]) was synthesized and conjugated to 1,4,7-triazacyclononane-N,N',N″-triacetic acid (NOTA) via a diethylene glycol (PEG2) linker.

View Article and Find Full Text PDF

Peptides mimicking the C-terminus of the small subunit (R2) of Mycobacterium tuberculosis ribonucleotide reductase (RNR) can compete for binding to the large subunit (R1) and thus inhibit RNR activity. Moreover, it has been suggested that the binding of the R2 C-terminus is very similar in M. tuberculosis and Salmonella typhimurium.

View Article and Find Full Text PDF

Macrocyclization is a commonly used strategy to preorganize HCV NS3 protease inhibitors in their bioactive conformation. Moreover, macrocyclization generally leads to greater stability and improved pharmacokinetic properties. In HCV NS3 protease inhibitors, it has been shown to be beneficial to include a vinylated phenylglycine in the P2 position in combination with alkenylic P1' substituents.

View Article and Find Full Text PDF

Macrocyclic analogues of angiotensin IV (Ang IV, Val(1)-Tyr(2)-Ile(3)-His(4)-Pro(5)-Phe(6)) targeting the insulin-regulated aminopeptidase (IRAP) have been designed, synthesized, and evaluated biologically. Replacement of His(4)-Pro(5)-Phe(6) by a 2-(aminomethyl)phenylacetic acid (AMPAA) moiety and of Val(1) and Ile(3) by amino acids bearing olefinic side chains followed by macrocyclization provided potent IRAP inhibitors. The impact of the ring size and the type (saturated versus unsaturated), configuration, and position of the carbon-carbon bridge was assessed.

View Article and Find Full Text PDF

The insulin-regulated aminopeptidase (IRAP) localized in areas of the brain associated with memory and learning is emerging as a new promising therapeutic target for the treatment of memory dysfunctions. The angiotensin II metabolite angiotensin IV (Ang IV, Val(1)-Tyr(2)-Ile(3)-His(4)-Pro(5)-Phe(6)) binds with high affinity to IRAP and inhibits this aminopeptidase (K(i) = 62.4 nM).

View Article and Find Full Text PDF

Phenylglycine has proved to be a useful P2 residue in HCV NS3 protease inhibitors. A novel pi-pi-interaction between the phenylglycine and the catalytic H57 residue of the protease is postulated. We hypothesized that the introduction of a vinyl on the phenylglycine might strengthen this pi-pi-interaction.

View Article and Find Full Text PDF

Substance P 1-7 (SP(1-7), H-Arg-Pro-Lys-Pro-Gln-Gln-Phe-OH) is the major bioactive metabolite of substance P. The interest in this heptapeptide originates from the observation that it modulates, and in certain cases opposes the effects of the parent peptide, e.g.

View Article and Find Full Text PDF

Ribonucleotide reductase (RNR) is a viable target for new drugs against the causative agent of tuberculosis, Mycobacterium tuberculosis. Previous work has shown that an N-acetylated heptapeptide based on the C-terminal sequence of the smaller RNR subunit can disrupt the formation of the holoenzyme sufficiently to inhibit its function. Here the synthesis and binding affinity, evaluated by competitive fluorescence polarization, of several truncated and N-protected peptides are described.

View Article and Find Full Text PDF

We have recently identified a specific binding site for the tachykinin peptide substance P (SP) fragment SP(1-7) in the rat spinal cord. This site appeared very specific for SP(1-7) as the binding affinity of this compound highly exceeded those of other SP fragments. We also observed that endomorphin-2 (EM-2) exhibited high potency in displacing SP(1-7) from this site.

View Article and Find Full Text PDF

Analogues of the hexapeptide angiotensin IV (Ang IV, Val(1)-Tyr(2)-Ile(3)-His(4)-Pro(5)-Phe(6)) encompassing a 4-hydroxydiphenylmethane scaffold replacing Tyr(2) and a phenylacetic or benzoic acid moiety replacing His(4)-Pro(5)-Phe(6) have been synthesized and evaluated in biological assays. The analogues inhibited the proteolytic activity of cystinyl aminopeptidase (CAP), frequently referred to as the insulin-regulated aminopeptidase (IRAP), and were found less efficient as inhibitors of aminopeptidase N (AP-N). The best Ang IV mimetics in the series were approximately 20 times less potent than Ang IV as IRAP inhibitors.

View Article and Find Full Text PDF

Some of the biological effects demonstrated after administration of substance P (SP) in vivo can indirectly be attributed to the fragmentation of the undecapeptide to its N-terminal bioactive fragment SP(1-7). This heptapeptide (H-Arg-Pro-Lys-Pro-Gln-Gln-Phe-OH) is a major bioactive metabolite from SP that frequently exerts similar biological effects as the parent peptide but also, in several cases, completely opposite actions. Specific binding sites for the heptapeptide SP(1-7) that are separate from the SP preferred NK receptors have been identified.

View Article and Find Full Text PDF

Angiotensin IV analogs encompassing aromatic scaffolds replacing parts of the backbone of angiotensin IV have been synthesized and evaluated in biological assays. Several of the ligands displayed high affinities to the insulin-regulated aminopeptidase (IRAP)/AT(4) receptor. Displacement of the C-terminal of angiotensin IV with an o-substituted aryl acetic acid derivative delivered the ligand 4, which exhibited the highest binding affinity (K(i) = 1.

View Article and Find Full Text PDF

Four tripeptides corresponding to the C-terminal region of angiotensin II were synthesized. One of these peptides (Ac-His-Pro-Ile) showed moderate binding affinity for the AT2 receptor. Two aromatic histidine-related scaffolds were synthesized and introduced in the tripeptides to give eight new peptidomimetic structures.

View Article and Find Full Text PDF

Molecular modeling and inhibitory potencies of tetrapeptide protease inhibitors of HCV NS3 proposed phenylglycine as a new promising P2 residue. The results suggest that phenylglycine might be capable of interacting with the NS3 (protease-helicase/NTPase) in ways not possible for the common P2 proline-based inhibitors. Thus, a series of tripeptides, both linear and macrocyclic, based on p-hydroxy-phenylglycine in the P2 position were prepared and their inhibitory effect determined.

View Article and Find Full Text PDF

A benzodiazepine-based beta-turn mimetic has been designed, synthesized, and incorporated into angiotensin II. Comparison of the mimetic with beta-turns in crystallized proteins showed that it most closely resembles a type II beta-turn. The compounds exhibited high to moderate binding affinity for the AT2 receptor, and one also displayed high affinity for the AT1 receptor.

View Article and Find Full Text PDF

The angiotensin IV receptor (AT4 receptor) is the insulin-regulated aminopeptidase enzyme (IRAP, EC 3.4.11.

View Article and Find Full Text PDF

Two pentapeptides, Ac-Tyr-Ile-His-Pro-Phe/Ile, were synthesized and shown to have angiotensin II AT2 receptor affinity and agonistic activity. Based on these peptides, a new series of 13 pseudopeptides was synthesized via introduction of five different turn scaffolds replacing the Tyr-Ile amino acid residues. Pharmacological evaluation disclosed subnanomolar affinities for some of these compounds at the AT2 receptor.

View Article and Find Full Text PDF