Polyelectrolyte complexes (PECs) are polymeric structures formed by the self-assembly of oppositely charged polymers. Novel biomaterials based on PECs are currently under investigation as drug delivery systems, among other applications. This strategy leverages the ability of PECs to entrap drugs under mild conditions and control their release.
View Article and Find Full Text PDFKraft lignin, a by-product from the production of pulp, is currently incinerated in the recovery boiler during the chemical recovery cycle, generating valuable bioenergy and recycling inorganic chemicals to the pulping process operation. Removing lignin from the black liquor or its gasification lowers the recovery boiler load enabling increased pulp production. During the past ten years, lignin separation technologies have emerged and the interest of the research community to valorize this underutilized resource has been invigorated.
View Article and Find Full Text PDFInteraction between xylan and cellulose microfibrils is required to maintain the integrity of secondary cell walls. However, the mechanisms governing their assembly and the effects on cellulose surface polymers are not fully clear. Here, molecular dynamics simulations are used to study xylan adsorption onto hydrated cellulose fibrils.
View Article and Find Full Text PDFBiomass electro-oxidation is a promising approach for the sustainable generation of H by electrolysis with simultaneous synthesis of value-added chemicals. In this work, the electro-oxidation of two structurally different organic hydroxyacids, lactic acid and gluconic acid, was studied comparatively to understand how the chemical structure of the hydroxyacid affects the electrochemical reactivity under various conditions. It was concluded that hydroxyacids such as gluconic acid, with a considerable density of C-OH groups, are highly reactive and promising for the sustainable generation of H by electrolysis at low potentials and high conversion rates (less than -0.
View Article and Find Full Text PDFHemicelluloses, a family of heterogeneous polysaccharides with complex molecular structures, constitute a fundamental component of lignocellulosic biomass. However, the contribution of each hemicellulose type to the mechanical properties of secondary plant cell walls remains elusive. Here we homogeneously incorporate different combinations of extracted and purified hemicelluloses (xylans and glucomannans) from softwood and hardwood species into self-assembled networks during cellulose biosynthesis in a bacterial model, without altering the morphology and the crystallinity of the cellulose bundles.
View Article and Find Full Text PDFA novel method exploiting the in situ reactivation of a PdNi catalyst to enhance the electro-oxidation of alcohols is reported. The periodic regeneration of the catalyst surface leads to significant gains in terms of conversion rate, energy requirements and stability compared to the conventional potentiostatic method.
View Article and Find Full Text PDFA series of optically transparent composites were made by using tunicate cellulose membranes, in which the naturally organized cellulose microfibrillar network structure of tunicate tunics was preserved and used as the template and a solution of glycerol and citric acid at different molar ratios was used as the matrix. Polymerization through ester bond formation occurred at elevated temperatures without any catalyst, and water was released as the only byproduct. The obtained composites had a uniform and dense structure.
View Article and Find Full Text PDFXylan is tightly associated with cellulose and lignin in secondary plant cell walls, contributing to its rigidity and structural integrity in vascular plants. However, the molecular features and the nanoscale forces that control the interactions among cellulose microfibrils, hemicelluloses, and lignin are still not well understood. Here, we combine comprehensive mass spectrometric glycan sequencing and molecular dynamics simulations to elucidate the substitution pattern in softwood xylans and to investigate the effect of distinct intramolecular motifs on xylan conformation and on the interaction with cellulose surfaces in Norway spruce ().
View Article and Find Full Text PDFThis work reveals the structural variations of cellulose nanofibers (CNF) prepared from different cellulose sources, including softwood (Picea abies), hardwood (Eucalyptus grandis × E. urophylla), and tunicate (Ciona intestinalis), using different preparation processes and their correlations to the formation and performance of the films prepared from the CNF. Here, the CNF are prepared from wood chemical pulps and tunicate isolated cellulose by an identical homogenization treatment subsequent to either an enzymatic hydrolysis or a 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-mediated oxidation.
View Article and Find Full Text PDFWith the arising of global climate change and resource shortage, in recent years, increased attention has been paid to environmentally friendly materials. Trees are sustainable and renewable materials, which give us shelter and oxygen and remove carbon dioxide from the atmosphere. Trees are a primary resource that human society depends upon every day, for example, homes, heating, furniture, and aircraft.
View Article and Find Full Text PDFThe fungus Phoma herbarum isolated from soil showed growth on highly pure lignin extracted from spruce wood and on synthetic lignin (DHP). The lignin remaining after cultivation was shown to have a lower molecular weight. The reduction in the numbers of ether linkages of the extracted lignins was also observed by derivatization followed by reductive cleavage (DFRC) in combination with (31)P NMR studies.
View Article and Find Full Text PDFIn this study, new wood-inspired films were developed from microfibrillated cellulose and galactoglucomannan-lignin networks isolated from chemothermomechanical pulping side streams and cross-linked using laccase enzymes. To the best of our knowledge, this is the first time that cross-linked galactoglucomannan-lignin networks have been used for the potential development of composite films inspired by woody-cell wall formation. Their capability as polymeric matrices was assessed based on thermal, structural, mechanical and oxygen permeability analyses.
View Article and Find Full Text PDFIn this study we were mirroring suggested in vivo phenomena of lignin-hemicellulose complex formation in vitro, by cross-linking Norway spruce (Picea abies) galactoglucomannans, xylans and lignin moieties to high molecular weight complexes by laccase treatment. We were able to observe the oxidation and cross-linking of non-condensed guaiacyl-type phenolic moieties attached to both of the hemicelluloses by (31)P NMR and size-exclusion chromatography. We suggest that hemicelluloses-lignin complexes form covalently linked structural units during the early stages of lignification via radical enzymatic cross-linking catalyzed by laccase.
View Article and Find Full Text PDFA novel mechanical pre-treatment method was used to separate the wood chips into fiber bundles in order to extract high molecular weight wood polymers. The mechanical pre-treatment involved chip compression in a conical plug-screw followed by defibration in a fiberizer. The fiberized wood was treated with hot water at various combinations of time and temperature in order to analyze the extraction yield of hemicelluloses at different conditions.
View Article and Find Full Text PDFHemicelluloses are one of the main constituents of plant cell walls and thereby one of the most abundant biopolymers on earth. They can be obtained as by-products from different wood based processes, most importantly from the mechanical pulping. Hemicelluloses have interesting properties in e.
View Article and Find Full Text PDFLignosulfonates are by-products from the sulfite pulping process. During this process, lignin is liberated from pulp fibers through sulfonation and washed away. As a consequence, the lignosulfonate molecules contain both hydrophobic and hydrophilic moieties.
View Article and Find Full Text PDFIn order to investigate the importance of the monomeric gamma-carbon chemistry in lignin biopolymerization and structure, synthetic lignins (dehydrogenation polymers; DHP) were made from monomers with different degrees of oxidation at the gamma-carbon, i.e., carboxylic acid, aldehyde and alcohol.
View Article and Find Full Text PDFDehydrogenation polymers (DHPs or synthetic lignins) were synthesized from coniferyl alcohol by enzymatic oxidation in the presence of ascorbic acid to study the potential effects of an antioxidant upon their structure. Specific interunit substructures (beta-O-4', beta-beta', and beta-5') were quantified by 13C NMR, which showed how ascorbic acid altered their amounts compared with control syntheses without this antioxidant, especially by increasing the amount of beta-O-4' substructures. The effect of ascorbic acid increased with its concentration.
View Article and Find Full Text PDFThe effects of fungal cellulases on model cellulose films were studied using a high-resolution quartz crystal microbalance (QCM) sensitive to minute changes of the nanometer thick model cellulose films. It was found that endoglucanases not only produce new end groups but also cause a swelling of the cellulose film. The cellobiohydrolases degraded the films quickly, which was detected as a rapid decrease in the remaining amount of cellulose on the QCM crystal.
View Article and Find Full Text PDFSteam explosion is an important process for the fractionation of biomass components. In order to understand the behaviour of lignin under the conditions encountered in the steam explosion process, as well as in other types of steam treatment, aspen wood and isolated lignin from aspen were subjected to steam treatment under various conditions. The lignin portion was analyzed using NMR and size exclusion chromatography as major analytical techniques.
View Article and Find Full Text PDFLignin is believed to be synthesized by oxidative coupling of 4-hydroxyphenylpropanoids. In native lignin there are some types of reduced structures that cannot be explained solely by oxidative coupling. In the present work we showed via biomimetic model experiments that nicotinamide adenine dinucleotide (NADH), in an uncatalyzed process, reduced a beta-aryl ether quinone methide to its benzyl derivative.
View Article and Find Full Text PDFA high accessibility is an essential prerequisite for a homogeneous substitution of cellulose material. In this study, chemical and enzymatic pretreatments to increase the accessibility of cellulose materials have been investigated. Dissolving pulp has been treated with a monocomponent endoglucanase.
View Article and Find Full Text PDF