Friedreich's ataxia is an inherited neurodegenerative disease caused by the reduced expression of the mitochondrially active protein frataxin. We have previously shown that mice with a hepatocyte-specific frataxin knockout (AlbFxn(-/-)) develop multiple hepatic tumors in later life. In the present study, hepatic carbohydrate metabolism in AlbFxn(-/-) mice at an early and late life stage was analyzed.
View Article and Find Full Text PDFDNA-repair mechanisms enable cells to maintain their genetic information by protecting it from mutations that may cause malignant growth. Recent evidence suggests that specific DNA-repair enzymes contain ISCs (iron-sulfur clusters). The nuclearencoded protein frataxin is essential for the mitochondrial biosynthesis of ISCs.
View Article and Find Full Text PDFWe have disrupted expression of the mitochondrial Friedreich ataxia protein frataxin specifically in murine hepatocytes to generate mice with impaired mitochondrial function and decreased oxidative phosphorylation. These animals have a reduced life span and develop multiple hepatic tumors. Livers also show increased oxidative stress, impaired respiration and reduced ATP levels paralleled by reduced activity of iron-sulfur cluster (Fe/S) containing proteins (ISP), which all leads to increased hepatocyte turnover by promoting both apoptosis and proliferation.
View Article and Find Full Text PDFMore than 80 years ago Otto Warburg suggested that cancer might be caused by a decrease in mitochondrial energy metabolism paralleled by an increase in glycolytic flux. In later years, it was shown that cancer cells exhibit multiple alterations in mitochondrial content, structure, function, and activity. We have stably overexpressed the Friedreich ataxia-associated protein frataxin in several colon cancer cell lines.
View Article and Find Full Text PDF