Photosynthesis is one of the most important biological processes on Earth, providing the main source of bioavailable energy, carbon, and oxygen via the use of sunlight. Despite this importance, the minimum light level sustaining photosynthesis and net growth of primary producers in the global ocean is still unknown. Here, we present measurements from the MOSAiC field campaign in the central Arctic Ocean that reveal the resumption of photosynthetic growth and algal biomass buildup under the ice pack at a daily average irradiance of not more than 0.
View Article and Find Full Text PDFThe Barents Sea is a transition zone between the Atlantic and the Arctic Ocean. The ecosystem in this region is highly variable, and a seasonal baseline of biological factors is needed to monitor the effects of global warming. In this study, we report the results from the investigations of the bacterial and archaeal community in late winter, spring, summer, and early winter along a transect through the northern Barents Sea into the Arctic Ocean east of Svalbard using 16S rRNA metabarcoding.
View Article and Find Full Text PDFSingle-cell methods allow studying the activity of single bacterial cells, potentially shedding light on regulatory mechanisms involved in services like biochemical cycling. Bioorthogonal non-canonical amino acid tagging (BONCAT) is a promising method for studying bacterial activity in natural communities, using the methionine analogues L-azidohomoalanine (AHA) and L-homopropargylglycine (HPG) to track protein production in single cells. Both AHA and HPG have been deemed non-toxic, but recent findings suggest that HPG affects bacterial metabolism.
View Article and Find Full Text PDFMultiomics approaches need to be applied in the central Arctic Ocean to benchmark biodiversity change and to identify novel species and their genes. As part of MOSAiC, EcoOmics will therefore be essential for conservation and sustainable bioprospecting in one of the least explored ecosystems on Earth.
View Article and Find Full Text PDFBacterial vitality after water disinfection treatment was investigated using bio-orthogonal non-canonical amino acid tagging (BONCAT) and flow cytometry (FCM). Protein synthesis activity and DNA integrity (BONCAT-SYBR Green) was monitored in monocultures and in natural marine samples after UV irradiation (from 25 to 200 mJ/cm) and heat treatment (from 15 to 45 min at 55°C). UV irradiation of caused DNA degradation followed by the decrease in protein synthesis within a period of 24 h.
View Article and Find Full Text PDFIn the Arctic, seasonal changes are substantial, and as a result, the marine bacterial community composition and functions differ greatly between the dark winter and light-intensive summer. While light availability is, overall, the external driver of the seasonal changes, several internal biological interactions structure the bacterial community during shorter timescales. These include specific phytoplankton-bacteria associations, viral infections and other top-down controls.
View Article and Find Full Text PDFChannelrhodopsins (ChRs) are light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity. The currently characterized ChR families include green algal and cryptophyte cation-conducting ChRs (CCRs) and cryptophyte, haptophyte, and stramenopile anion-conducting ChRs (ACRs). Here, we report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal hosts.
View Article and Find Full Text PDFIn this study, we have combined bioorthogonal non-canonical amino acid tagging (BONCAT) and flow cytometry (FCM) analysis, and we demonstrate the applicability of the method for marine prokaryotes. Enumeration of active marine bacteria was performed by combining the DNA stain SYBR Green with detection of protein production with BONCAT. After optimization of incubation condition and substrate concentration on monoculture of , we applied and modified the method to natural marine samples.
View Article and Find Full Text PDFThe Arctic marine environment experiences dramatic seasonal changes in light and nutrient availability. To investigate the influence of seasonality on Arctic marine virus communities, five research cruises to the west and north of Svalbard were conducted across one calendar year, collecting water from the surface to 1000 m in depth. We employed metabarcoding analysis of major capsid protein and genes in order to investigate T4-like myoviruses and large dsDNA viruses infecting prokaryotic and eukaryotic picophytoplankton, respectively.
View Article and Find Full Text PDFThe motivation for focusing on a specific virus is often its importance in terms of impact on human interests. The chlorella viruses are a notable exception and 40 years of research has made them the undisputed model system for large icosahedral dsDNA viruses infecting eukaryotes. Their status has changed from inconspicuous and rather odd with no ecological relevance to being the type strain possibly affecting humans and human cognitive functioning in ways that remain to be understood.
View Article and Find Full Text PDFIn food webs, interactions between competition and defence control the partitioning of limiting resources. As a result, simple models of these interactions contain links between biogeochemistry, diversity, food web structure and ecosystem function. Working at hierarchical levels, these mechanisms also produce self-similarity and therefore suggest how complexity can be generated from repeated application of simple underlying principles.
View Article and Find Full Text PDFCombining a minimum food web model with Arctic microbial community dynamics, we have suggested that top-down control by copepods can affect the food web down to bacterial consumption of organic carbon. Pursuing this hypothesis further, we used the minimum model to design and analyse a mesocosm experiment, studying the effect of high (+Z) and low (-Z) copepod density on resource allocation, along an organic-C addition gradient. In the Arctic, both effects are plausible due to changes in advection patterns (affecting copepods) and meltwater inputs (affecting carbon).
View Article and Find Full Text PDFOne of the most abundant archaeal groups on Earth is the Thaumarchaeota. They are recognized as major contributors to marine ammonia oxidation, a crucial step in the biogeochemical cycling of nitrogen. Their universal success is attributed to a high genomic flexibility and niche adaptability.
View Article and Find Full Text PDFThe aim of this study was to reveal the relative content of C, N, Ca, Si, P, Mg, K, S and Fe in seston particles in Norwegian coastal water (NCW), and how it relates to biological and hydrographic processes during seasonal cycles from October 2009-March 2012. The following over all stoichiometric relationship for the time series was obtained: CNSiCaPMgSKFe, which is novel for marine waters. A record-breaking (187-year record) negative North Atlantic Oscillation (NAO) index caused extreme physical forcing on the Norwegian Coastal Current Water (NCCW) during the winter 2009-2010, and the inflow and upwelling of saline Atlantic water (AW) in the fjord was thus extraordinary during late spring-early summer in 2010.
View Article and Find Full Text PDFThe study of airborne bacteria relies on a sampling strategy that preserves their integrity and in situ physiological state, e.g. viability, cultivability, metabolic activity, and ice-nucleation activity.
View Article and Find Full Text PDFViruses influence the ecology and diversity of phytoplankton in the ocean. Most studies of phytoplankton host-virus interactions have focused on bloom-forming species like or spp. The role of viruses infecting phytoplankton that do not form conspicuous blooms have received less attention.
View Article and Find Full Text PDFWe report the complete genome sequence of CeV-01B, a large double-stranded DNA virus infecting the unicellular marine phytoplankton Haptolina (formerly Chrysochromulina) ericina. CeV-01B and its closest relative Phaeocystis globosa virus define an emerging subclade of the Megaviridae family with smaller genomes and particles than the originally described giant Mimiviridae infecting Acanthamoeba.
View Article and Find Full Text PDFNumbering in excess of 10 million per milliliter of water, it is now undisputed that aquatic viruses are one of the major factors shaping the ecology and evolution of Earth's microbial world. Nonetheless, environmental viral diversity and roles remain poorly understood. Here we report the first thorough characterization of a virus (designated TsV) that infects the coastal marine microalga Tetraselmis striata.
View Article and Find Full Text PDFA minimum mathematical model of the marine pelagic microbial food web has previously shown to be able to reproduce central aspects of observed system response to different bottom-up manipulations in a mesocosm experiment Microbial Ecosystem Dynamics (MEDEA) in Danish waters. In this study, we apply this model to two mesocosm experiments (Polar Aquatic Microbial Ecology (PAME)-I and PAME-II) conducted at the Arctic location Kongsfjorden, Svalbard. The different responses of the microbial community to similar nutrient manipulation in the three mesocosm experiments may be described as diatom-dominated (MEDEA), bacteria-dominated (PAME-I), and flagellated-dominated (PAME-II).
View Article and Find Full Text PDFWe have isolated three novel lytic dsDNA-viruses from Raunefjorden (Norway) that are putative members of the Mimiviridae family, namely Haptolina ericina virus RF02 (HeV RF02), Prymnesium kappa virus RF01 (PkV RF01), and Prymnesium kappa virus RF02 (PkV RF02). Each of the novel haptophyte viruses challenges the common conceptions of algal viruses with respect to host range, phylogenetic affiliation and size. PkV RF01 has a capsid of ~310 nm and is the largest algal virus particle ever reported while PkV RF01 and HeV RF02 were able to infect different species, even belonging to different genera.
View Article and Find Full Text PDFThe responses of heterotrophic microbial food webs (HMFW) to the joint action of abiotic stressors related to global change have been studied in an oligotrophic high-mountain lake. A 2×5 factorial design field experiment performed with large mesocosms for >2 months was used to quantify the dynamics of the entire HMFW (bacteria, heterotrophic nanoflagellates, ciliates, and viruses) after an experimental P-enrichment gradient which approximated or surpassed current atmospheric P pulses in the presence vs. absence of ultraviolet radiation.
View Article and Find Full Text PDFBiogenic production and sedimentation of calcium carbonate in the ocean, referred to as the carbonate pump, has profound implications for the ocean carbon cycle, and relate both to global climate, ocean acidification and the geological past. In marine pelagic environments coccolithophores, foraminifera and pteropods have been considered the main calcifying organisms. Here, we document the presence of an abundant, previously unaccounted fraction of marine calcium carbonate particles in seawater, presumably formed by bacteria or in relation to extracellular polymeric substances.
View Article and Find Full Text PDFCells maintain an osmotic pressure essential for growth and division, using organic compatible solutes and inorganic ions. Mg(2+), which is the most abundant divalent cation in living cells, has not been considered an osmotically important solute. Here we show that under carbon limitation or dormancy native marine bacterial communities have a high cellular concentration of Mg(2+) (370-940 mM) and a low cellular concentration of Na(+) (50-170 mM).
View Article and Find Full Text PDFThe identification of inteins in viral genomes is becoming increasingly common. Inteins are selfish DNA elements found within coding regions of host proteins. Following translation, they catalyse their own excision and the formation of a peptide bond between the flanking protein regions.
View Article and Find Full Text PDF