Publications by authors named "Gunn A Hildrestrand"

Oxidative DNA damage in the brain has been implicated in neurodegeneration and cognitive decline. DNA glycosylases initiate base excision repair (BER), the main pathway for oxidative DNA base lesion repair. NEIL1 and NEIL3 DNA glycosylases affect cognition in mice, while the role of NEIL2 remains unclear.

View Article and Find Full Text PDF

Oxidation resistance gene 1 (OXR1) protects cells against oxidative stress. We find that male mice with brain-specific isoform A knockout (Oxr1A) develop fatty liver. RNA sequencing of male Oxr1A liver indicates decreased growth hormone (GH) signaling, which is known to affect liver metabolism.

View Article and Find Full Text PDF

Base excision repair (BER) is a major pathway for removal of DNA base lesions and maintenance of genomic stability, which is essential in cancer prevention. DNA glycosylases recognize and remove specific lesions in the first step of BER. The existence of a number of these enzymes with overlapping substrate specificities has been thought to be the reason why single knock-out models of individual DNA glycosylases are not cancer prone.

View Article and Find Full Text PDF

Myocardial infarction (MI) triggers a reparative response involving fibroblast proliferation and differentiation driving extracellular matrix modulation necessary to form a stabilizing scar. Recently, it was shown that a genetic variant of the base excision repair enzyme NEIL3 was associated with increased risk of MI in humans. Here, we report elevated myocardial NEIL3 expression in heart failure patients and marked myocardial upregulation of Neil3 after MI in mice, especially in a fibroblast-enriched cell fraction.

View Article and Find Full Text PDF

Ogg1 and Mutyh DNA glycosylases cooperate to prevent mutations caused by 8-oxoG, a major premutagenic DNA lesion associated with cognitive decline. We have examined behavior and cognitive function in mice deficient of these glycosylases. Ogg1(-/-)Mutyh(-/-) mice were more active and less anxious, with impaired learning ability.

View Article and Find Full Text PDF

7,8-Dihydro-8-oxoguanine (8-oxoG) is one of the most common oxidative base lesions in normal tissues induced by a variety of endogenous and exogenous agents. Hydantoins are products of 8-oxoG oxidation and as 8-oxoG, they have been shown to be mutagenic lesions. Oxidative DNA damage has been implicated in the etiology of various age-associated pathologies, such as cancer, cardiovascular diseases, arthritis, and several neurodegenerative diseases.

View Article and Find Full Text PDF

Accumulation of oxidative DNA damage has been proposed as a potential cause of age-related cognitive decline. The major pathway for removal of oxidative DNA base lesions is base excision repair, which is initiated by DNA glycosylases. In mice, Neil3 is the main DNA glycosylase for repair of hydantoin lesions in single-stranded DNA of neural stem/progenitor cells, promoting neurogenesis.

View Article and Find Full Text PDF

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by trinucleotide repeat (TNR) expansions. We show here that somatic TNR expansions are significantly reduced in several organs of R6/1 mice lacking exon 2 of Nei-like 1 (Neil1) (R6/1/Neil1(-/-)), when compared with R6/1/Neil1(+/+) mice. Somatic TNR expansion is measured by two different methods, namely mean repeat change and instability index.

View Article and Find Full Text PDF

Neural stem/progenitor cell proliferation and differentiation are required to replace damaged neurons and regain brain function after hypoxic-ischemic events. DNA base lesions accumulating during hypoxic-ischemic stress are removed by DNA glycosylases in the base-excision repair pathway to prevent cytotoxicity and mutagenesis. Expression of the DNA glycosylase endonuclease VIII-like 3 (Neil3) is confined to regenerative subregions in the embryonic and perinatal brains.

View Article and Find Full Text PDF

Adipose-tissue derived mesenchymal stem cells (AT-MSCs) are a promising tool for use in cell-based therapies. However, in vitro expansion is required to obtain clinically relevant cell numbers, and this might increase the chance of genomic instability. DNA repair is crucial for maintaining DNA integrity.

View Article and Find Full Text PDF

Background: The base excision repair pathway is responsible for repairing small DNA base lesions caused by endogenous and exogenous damaging agents. Repair is initiated by DNA glycosylases that recognize and remove the lesions. NEIL3 is one of 11 mammalian DNA glycosylases identified to date and it was discovered on the basis of sequence homology to the E.

View Article and Find Full Text PDF

The DNA glycosylase hNEIL1 initiates base excision repair (BER) of a number of oxidized purines and pyrimidines in cellular DNA and is one of three mammalian orthologs of the Escherichia coli Nei/Fpg enzymes. Human NEIL1 has been purified and extensively characterized biochemically, however, not much is known about its intracellular distribution. In the present work, we have studied the cellular localization of hNEIL1 using both antibodies raised against the full-length recombinant protein and a stable HeLa cell line expressing hNEIL1 fused N-terminal to EGFP.

View Article and Find Full Text PDF

In mammalian cells, 8-oxoguanine DNA glycosylase-1 (OGG1) is the main DNA glycosylase for the removal of 8-oxoguanine (8-oxoG). 8-oxoG, one of the most common products of the oxidative attack of DNA, is a premutagenic lesion that accumulates spontaneously at high frequencies in the genome. In this study, Ogg1 mRNA expression was detected throughout embryonic development in mice.

View Article and Find Full Text PDF

Numerous lines of evidence support the role of oxidative stress in different types of cancer. A major DNA lesion, 8-oxo-7,8-dihydroguanine (8-oxoG), is formed by reactive oxygen species in the genome under physiological conditions. 8-OxoG is strongly mutagenic, generating G.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session093m64rrr6au1q4aea5rgojm75u33g69): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once