Publications by authors named "Gunjan Gakhar"

Background: Tumor cells expressing excessive anionic-charged sialic acid can be potentially targeted by cationic polymers which may inhibit tumor growth. In the present study, three new families of cationic polymers were synthesized to assess their effects on prostate cancer cells.

Materials And Methods: Cationic polymers effects on PC3 prostate cancer cells and normal prostate epithelial cell (RWPE-1) were assessed using cell viability, DNA fragmentation, apoptosis assays and confocal microscopy.

View Article and Find Full Text PDF

Metastasis is a process in which tumor cells shed from the primary tumor intravasate blood vascular and lymphatic system, thereby, gaining access to extravasate and form a secondary niche. The extravasation of tumor cells from the blood vascular system can be studied using endothelial cells (ECs) and tumor cells obtained from different cell lines. Initial studies were conducted using static conditions but it has been well documented that ECs behave differently under physiological flow conditions.

View Article and Find Full Text PDF

Hematogenous metastasis accounts for the majority of cancer-related deaths, yet the mechanism remains unclear. Circulating tumor cells (CTCs) in blood may employ different pathways to cross blood endothelial barrier and establish a metastatic niche. Several studies provide evidence that prostate cancer (PCa) cell tethering and rolling on microvascular endothelium via E-selectin/E-selectin ligand interactions under shear flow theoretically promote extravasation and contribute to the development of metastases.

View Article and Find Full Text PDF

Cancer metastasis accounts for the majority of cancer-related deaths owing to poor response to anticancer therapies. Molecular understanding of metastasis-associated drug resistance remains elusive due to the scarcity of available tumor tissue. Isolation of circulating tumor cells (CTCs) from the peripheral blood of patients has emerged as a valid alternative source of tumor tissue that can be subjected to molecular characterization.

View Article and Find Full Text PDF

Cancer cells have reduced capacity for gap junctional inter-cellular communication (GJIC). One feasible approach to reduce growth of cancer cells is to enhance GJIC. This report shows that a second-generation substituted quinoline, PQ7, has anti-tumor effect.

View Article and Find Full Text PDF

Substituted quinolines (PQ code number), which reduce colony formation and increase gap junctional intercellular communication, were tested for their ability to interact with various molecular targets in murine and human tumor cell lines in vitro. Various markers of tumor cell metabolism, DNA fragmentation, mitotic disruption, apoptosis induction and growth factor receptor signaling pathways were assayed in vitro to evaluate drug cytotoxicity. Based on its ability to inhibit the metabolic activity of suspension cultures of leukemic L1210 cells at days 2 and 4 in vitro, PQ1 succinic acid salt is the most effective antiproliferative agent among the synthetic quinoline analogs tested.

View Article and Find Full Text PDF

Connexin proteins are the principle structural components of the gap junctions. Colocalization and tissue-specific expression of diverse connexin molecules are reported to occur in a variety of organs. Impairment of gap junctional intercellular communication, caused by mutations, gain of function or loss of function of connexins, is involved in a number of diseases including the development of cancer.

View Article and Find Full Text PDF

Tamoxifen is a drug of choice for endocrine-responsive breast tumor patients. However, tamoxifen resistance has become a major concern for the treatment of breast cancer. Combinational therapies of tamoxifen and different drugs are being frequently studied.

View Article and Find Full Text PDF

Previous studies suggest that many neoplastic tissues exhibit a decrease in gap junctional intercellular communication (GJIC). Many hydrocarbons and organochlorine compounds are environmental pollutants known to be carcinogenic. The effect of an organochlorine compound, TCDD, on GJIC in human breast cell lines has not been established.

View Article and Find Full Text PDF