Acrylamide is formed via the Maillard reaction between reducing sugars and asparagine in a number of carbohydrate-rich foods during heat treatment. High acrylamide levels have been found in potato products processed at high temperatures. To examine the impact of harvest year, information on weather conditions during growth, that is, temperature, precipitation, and light, was collected, together with analytical data on the concentrations of free amino acids and sugars in five potato clones and acrylamide contents in potato chips (commonly known as crisps in Europe).
View Article and Find Full Text PDFThe formation of acrylamide in potato crisps was fitted by empirical mathematical models. Potato slices were fried under the same experimental conditions for different times. Besides the content of precursors in the raw potato slices, acrylamide and water content in the potato crisps were quantified after predetermined times (2-6 min).
View Article and Find Full Text PDFPotato is one of the world's most widely grown tuber crop, in which starch is the predominant form of carbohydrates. Potatoes can be prepared in many ways: boiled, fried or roasted. Frying and roasting potatoes at high temperatures result in an appetizing crust, but at the same time acrylamide can form.
View Article and Find Full Text PDFJ Biochem Biophys Methods
November 2006
An analytical method for the analysis of 3-aminopropionamide (3-APA) based on derivatization with dansyl chloride and liquid chromatography/fluorescence detection was developed. We have analysed 3-APA formation in raw potatoes, grown and stored under different condition, green and roasted coffee beans and in freeze dried mixtures of asparagine with sucrose and glucose in molar ratio of 1:0.5, 1:1, and 1:1.
View Article and Find Full Text PDFA method based on UV-irradiation in organic solvent followed by transfer of the remaining pollutants into silicone oil for subsequent biodegradation in a biphasic system inoculated with a phenanthrene degrading Pseudomonas sp. was tested for the treatment of various mixtures of PAHs. Acetone was first selected as the most suitable solvent compared to methanol, acetonitrile and silicone oil for the removal of pyrene and phenanthrene.
View Article and Find Full Text PDFThe UV-photolysis of PAHs was tested in silicone oil and tetradecane. In most cases, the degradation of a pollutant provided within a mixture was lower than when provided alone due to competitive effects. With the exception of anthracene, the larger pollutants (4- and 5-rings) were always degraded first, proving that UV-treatment preferentially acts on large PAHs and thereby provides a good complement to microbial degradation.
View Article and Find Full Text PDF