Publications by authors named "Gundars Goldsteins"

Article Synopsis
  • Microglia are immune cells in the brain that help maintain cellular health, but they might malfunction in Parkinson's disease (PD), particularly in relation to alpha-synuclein (αSyn) aggregation, which is a key feature of the disease.
  • Research using human induced pluripotent stem cells showed that when microglia are exposed to both alpha-synuclein fibrils and inflammatory signals, it disrupts their ability to effectively manage and clear these aggregates.
  • The study highlights that this model is useful for understanding microglial functioning in PD and reveals how inflammation affects their processing of alpha-synuclein, possibly worsening the disease state.
View Article and Find Full Text PDF

Stroke is a leading cause of permanent disability worldwide. Despite intensive research over the last decades, key anti-inflammatory strategies that have proven beneficial in pre-clinical animal models have often failed in translation. The importance of neutrophils as pro- and anti-inflammatory peripheral immune cells has often been overlooked in ischemic stroke.

View Article and Find Full Text PDF

Under physiological conditions in vivo astrocytes internalize and degrade neuronal mitochondria in a process called transmitophagy. Mitophagy is widely reported to be impaired in neurodegeneration but it is unknown whether and how transmitophagy is altered in Alzheimer's disease (AD). Here we report that the internalization of neuronal mitochondria is significantly increased in astrocytes isolated from AD mouse brains.

View Article and Find Full Text PDF

A single paragraph of about 200 words maximum. Neurodegenerative diseases (ND), such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, pose a global challenge in the aging population due to the lack of treatments for their cure. Despite various disease-specific clinical symptoms, ND have some fundamental common pathological mechanisms involving oxidative stress and neuroinflammation.

View Article and Find Full Text PDF

Lipid peroxidation-initiated ferroptosis is an iron-dependent mechanism of programmed cell death taking place in neurological diseases. Here we show that a condensed benzo[b]thiazine derivative small molecule with an arylthiazine backbone (ADA-409-052) inhibits tert-Butyl hydroperoxide (TBHP)-induced lipid peroxidation (LP) and protects against ferroptotic cell death triggered by glutathione (GSH) depletion or glutathione peroxidase 4 (GPx4) inhibition in neuronal cell lines. In addition, ADA-409-052 suppresses pro-inflammatory activation of BV2 microglia and protects N2a neuronal cells from cell death induced by pro-inflammatory RAW 264.

View Article and Find Full Text PDF

The research on neurodegenerative disorders has long focused on neuronal pathology and used transgenic mice as disease models. However, our understanding of the chronic neurodegenerative process in the human brain is still very limited. It is increasingly recognized that neuronal loss is not caused solely by intrinsic degenerative processes but rather via impaired interactions with surrounding glia and other brain cells.

View Article and Find Full Text PDF

Protein homeostasis (proteostasis) disturbances and inflammation are evident in normal aging and some age-related neurodegenerative diseases. While the proteostasis network maintains the integrity of intracellular and extracellular functional proteins, inflammation is a biological response to harmful stimuli. Cellular stress conditions can cause protein damage, thus exacerbating protein misfolding and leading to an eventual overload of the degradation system.

View Article and Find Full Text PDF

In Parkinson`s disease (PD), the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta is associated with Lewy bodies arising from the accumulation of alpha-synuclein protein which leads ultimately to movement impairment. While PD has been considered a disease of the DA neurons, a glial contribution, in particular that of astrocytes, in PD pathogenesis is starting to be uncovered. Here, we report findings from astrocytes derived from induced pluripotent stem cells of LRRK2 G2019S mutant patients, with one patient also carrying a GBA N370S mutation, as well as healthy individuals.

View Article and Find Full Text PDF

Neuroinflammation is strongly induced by cerebral ischemia. The early phase after the onset of ischemic stroke is characterized by acute neuronal injury, microglial activation, and subsequent infiltration of blood-derived inflammatory cells, including macrophages. Therefore, modulation of the microglial/macrophage responses has increasingly gained interest as a potential therapeutic approach for the ischemic stroke.

View Article and Find Full Text PDF

Despite decades of research, current therapeutic interventions for Parkinson's disease (PD) are insufficient as they fail to modify disease progression by ameliorating the underlying pathology. Cellular proteostasis (protein homeostasis) is an essential factor in maintaining a persistent environment for neuronal activity. Proteostasis is ensured by mechanisms including regulation of protein translation, chaperone-assisted protein folding and protein degradation pathways.

View Article and Find Full Text PDF

Astrocytes are the most abundant cell type in the brain. They were long considered only as passive support for neuronal cells. However, recent data have revealed many active roles for these cells both in maintenance of the normal physiological homeostasis in the brain as well as in neurodegeneration and disease.

View Article and Find Full Text PDF

Inflammation is a prominent feature of the neuropathology of amyotrophic lateral sclerosis (ALS). Emerging evidence suggests that inflammatory cascades contributing to the disease progression are not restricted to the central nervous system (CNS) but also occur peripherally. Indeed, alterations in T cell responses and their secreted cytokines have been detected in ALS patients and in animal models of ALS.

View Article and Find Full Text PDF

Astrocytes are the gatekeepers of neuronal energy supply. In neurodegenerative diseases, bioenergetics demand increases and becomes reliant upon fatty acid oxidation as a source of energy. Defective fatty acid oxidation and mitochondrial dysfunctions correlate with hippocampal neurodegeneration and memory deficits in Alzheimer's disease (AD), but it is unclear whether energy metabolism can be targeted to prevent or treat the disease.

View Article and Find Full Text PDF

Background: Ischemic stroke is one of the main causes of death and disability worldwide. It is caused by the cessation of cerebral blood flow resulting in the insufficient delivery of glucose and oxygen to the neural tissue. The inflammatory response initiated by ischemic stroke in order to restore tissue homeostasis in the acute phase of stroke contributes to delayed brain damage.

View Article and Find Full Text PDF

Stroke is a highly debilitating, often fatal disorder for which current therapies are suitable for only a minor fraction of patients. Discovery of novel, effective therapies is hampered by the fact that advanced age, primary age-related tauopathy or comorbidities typical to several types of dementing diseases are usually not taken into account in preclinical studies, which predominantly use young, healthy rodents. Here we investigated for the first time the neuroprotective potential of bexarotene, an FDA-approved agent, in a co-morbidity model of stroke that combines high age and tauopathy with thromboembolic cerebral ischemia.

View Article and Find Full Text PDF

Aims: Protein misfolding occurs in neurodegenerative diseases, including Parkinson's disease (PD). In endoplasmic reticulum (ER), an overload of misfolded proteins, particularly alpha-synuclein (αSyn) in PD, may cause stress and activate the unfolded protein response (UPR). This UPR includes activation of chaperones, such as protein disulphide isomerase (PDI), which assists refolding and contributes to removal of unfolded proteins.

View Article and Find Full Text PDF

Background: Endogenous defense against oxidative stress is controlled by nuclear factor erythroid 2-related factor 2 (Nrf2). The normal compensatory mechanisms to combat oxidative stress appear to be insufficient to protect against the prolonged exposure to reactive oxygen species during disease. Counterbalancing the effects of oxidative stress by up-regulation of Nrf2 signaling has been shown to be effective in various disease models where oxidative stress is implicated, including Alzheimer's disease.

View Article and Find Full Text PDF

Background: A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) proteoglycanases are specialized in the degradation of chondroitin sulfate proteoglycans and participate in mechanisms mediating neuroplasticity. Despite the beneficial effect of ADAMTS-4 on neurorepair after spinal cord injury, the functions of ADAMTS proteoglycanases in other CNS disease states have not been studied. Therefore, we investigated the expression, effects and associated mechanisms of ADAMTS-4 during amyotrophic lateral sclerosis (ALS) in the SOD1(G93A) mouse model.

View Article and Find Full Text PDF

Accumulation of proteins in aberrant conformation occurs in many neurodegenerative diseases. Furthermore, dysfunctions in protein handling in endoplasmic reticulum (ER) and the following ER stress have been implicated in a vast number of diseases, such as amyotrophic lateral sclerosis (ALS). During excessive ER stress unfolded protein response (UPR) is activated to return ER to its normal physiological balance.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is characterized by the progressive loss of motoneurons and degradation of the neuromuscular junctions (NMJ). Consistent with the dying-back hypothesis of motoneuron degeneration the decline in synaptic function initiates from the presynaptic terminals in ALS. Oxidative stress is a major contributory factor to ALS pathology and affects the presynaptic transmitter releasing machinery.

View Article and Find Full Text PDF

In amyotrophic lateral sclerosis (ALS), mitochondrial dysfunction is recognized as one of the key elements contributing to the pathology. Mitochondria are the major source of intracellular reactive oxygen species (ROS). Increased production of ROS as well as oxidative damage of proteins and lipids have been demonstrated in many models of ALS.

View Article and Find Full Text PDF

The aryl hydrocarbon receptor (AHR) functions in higher organisms in development, metabolism and toxic responses. Its Caenorhabditis elegans (C. elegans) ortholog, AHR-1, facilitates neuronal development, growth and movement.

View Article and Find Full Text PDF

Protein disulfide isomerase (PDI) is an oxidoreductase assisting oxidative protein folding in the endoplasmic reticulum of all types of cells, including neurons and glia. In neurodegenerative disorders, such as amyotrophic lateral sclerosis (ALS), up-regulation of PDI is an important part of unfolded protein response (UPR) that is thought to represent an adaption reaction and thereby protect the neurons. Importantly, studies on animal models of familial ALS with mutant Cu/Zn superoxide dismutase 1 (SOD1) have shown that the mutant SOD1 in astrocytes or microglia strongly regulates the progression of the disease.

View Article and Find Full Text PDF

Background: Granulocyte colony stimulating factor (GCSF) is protective in animal models of various neurodegenerative diseases. We investigated whether pegfilgrastim, GCSF with sustained action, is protective in a mouse model of amyotrophic lateral sclerosis (ALS). ALS is a fatal neurodegenerative disease with manifestations of upper and lower motoneuron death and muscle atrophy accompanied by inflammation in the CNS and periphery.

View Article and Find Full Text PDF