Publications by authors named "Gunaranjan Viswanathan"

We demonstrate the one-step synthesis of a silica-gold nanocomposite by simultaneous hydrolysis and reduction of gold chloride. The aminophenyl group was used as a reducing agent, and the trimethoxy silane group acts a precursor for the formation of silica. The porous gold nanoparticles were formed by etching out the silica-gold nanocomposite by hydrofluoric acid.

View Article and Find Full Text PDF

We present the fabrication and electrical characterization of a flexible hybrid composite structure using aligned multiwall carbon nanotube arrays in a poly(dimethylsiloxane) (PDMS) matrix. Using lithographically patterned nanotube arrays, one can make these structures at any length scale from submicrometer levels to bulk quantities. The PDMS matrix undergoes excellent conformal filling within the dense nanotube network, giving rise to extremely flexible conducting structures with unique electromechanical properties.

View Article and Find Full Text PDF

Electrospinning is a versatile process used to prepare micro- and nano- sized fibers from various polymers dissolved in volatile solvents. In this report, cellulose and cellulose-heparin composite fibers are prepared from nonvolatile room temperature ionic liquid (RTIL) solvents by electrospinning. RTILs are extracted from the biopolymer fiber after the fiber formation using a cosolvent.

View Article and Find Full Text PDF

Carbon nanotubes (CNT) are attractive for use in fiber-reinforced composite materials due to their very high aspect ratio, combined with outstanding mechanical and electrical properties. Composite materials comprising a collagen matrix with embedded CNT were prepared by mixing solubilized Type I collagen with solutions of carboxylated single-walled carbon nanotubes (SWNT) at concentrations of 0, 0.2, 0.

View Article and Find Full Text PDF

An in situ composite synthesis technique has been developed by grafting polystyrene chains onto single-wall carbon nanotubes (SWNTs) via a single-step debundling/polymerization scheme. The method, based on established anionic polymerization techniques, eliminates the need for nanotube pretreatment prior to functionalization and allows attachment of polymer molecules to pristine tubes without altering their original structure. The composites obtained contain well-dispersed SWNTs with good nanotube-matrix interaction.

View Article and Find Full Text PDF