Effective analysis of single-cell RNA sequencing (scRNA-seq) data requires a rigorous distinction between technical noise and biological variation. In this work, we propose a simple feature selection model, termed "Differentially Distributed Genes" or DDGs, where a binomial sampling process for each mRNA species produces a null model of technical variation. Using scRNA-seq data where cell identities have been established a priori, we find that the DDG model of biological variation outperforms existing methods.
View Article and Find Full Text PDFPatterns of lineal descent play a critical role in the development of metazoan embryos. In eutelic organisms that generate a fixed number of somatic cells, invariance in the topology of their cell lineage provides a powerful opportunity to interrogate developmental events with empirical repeatability across individuals. Studies of embryonic development using the nematode Caenorhabditis elegans have been drivers of discovery.
View Article and Find Full Text PDFHere we describe embGAN, a deep learning pipeline that addresses the challenge of automated cell detection and tracking in label-free 3D time lapse imaging. embGAN requires no manual data annotation for training, learns robust detections that exhibits a high degree of scale invariance and generalizes well to images acquired in multiple labs on multiple instruments.
View Article and Find Full Text PDFHigh throughput experimental approaches are increasingly allowing for the quantitative description of cellular and organismal phenotypes. Distilling these large volumes of complex data into meaningful measures that can drive biological insight remains a central challenge. In the quantitative study of development, for instance, one can resolve phenotypic measures for single cells onto their lineage history, enabling joint consideration of heritable signals and cell fate decisions.
View Article and Find Full Text PDFHigh throughput experimental approaches are increasingly allowing for the quantitative description of cellular and organismal phenotypes. Distilling these large volumes of complex data into meaningful measures that can drive biological insight remains a central challenge. In the quantitative study of development, for instance, one can resolve phenotypic measures for single cells onto their lineage history, enabling joint consideration of heritable signals and cell fate decisions.
View Article and Find Full Text PDF