Publications by authors named "Gun-Joo Sun"

Article Synopsis
  • Short-wavelength luminescence is crucial for creating efficient optoelectronic devices, leading researchers to explore ways to boost ultraviolet (UV) emissions through the encapsulation of ZnO with ZnS.
  • This study presents findings on ZnS-core/ZnO-shell nanorods that demonstrate significantly higher UV emission compared to the previously studied ZnO-core/ZnS-shell type, notably reaching an intensity 16 times more than uncoated ZnS nanorods.
  • The enhanced UV emission and suppression of undesirable deep level emissions in ZnS are attributed to a combination of factors, including synergistic emissions from both layers, effective carrier transfer, and reduced surface state interactions.
View Article and Find Full Text PDF

In this work, we investigated the NO and CO sensing properties of n-CaO-decorated n-ZnO nanorods and the dominant sensing mechanism in n-n heterostructured one-dimensional (1D) nanostructured multinetworked chemiresistive gas sensors utilizing the nanorods. The CaO-decorated n-ZnO nanorods showed stronger response to NO than most other ZnO-based nanostructures, including the pristine ZnO nanorods. Many researchers have attributed the enhanced sensing performance of heterostructured sensors to the modulation of the conduction channel width or surface depletion layer width.

View Article and Find Full Text PDF

There have been very few studies on the effects of combining two or more techniques on the sensing performance of nanostructured sensors. Cr2O3-functionalized ZnO nanorods were synthesized using carbothermal synthesis involving the thermal evaporation of a mixture of ZnO and graphite powders followed by a solvothermal process for Cr2O3-functionalization. The ethanol gas-sensing properties of multinetworked pristine and Cr2O3-functionalized ZnO nanorod sensors under UV illumination were examined to determine the effects of combining Cr2O3-ZnO heterostructure formation and UV irradiation on the gas-sensing properties of ZnO nanorods.

View Article and Find Full Text PDF

A simple hydrothermal route was used to synthesize In4Sn3O12 nanoparticles and In4Sn3O12-TeO2 composite nanoparticles, with In(C2H3O2)3, SnCl4, and TeCl4 as the starting materials. The structure and morphology of the synthesized nanoparticles were examined by X-ray diffraction and scanning electron microscopy (SEM), respectively. The gas-sensing properties of the pure and composite nanoparticles toward CO gas were examined at different concentrations (5-100ppm) of CO gas at different temperatures (100-300°C).

View Article and Find Full Text PDF

Networked ZnO nanowires were fabricated via a vapor-phase selective growth method. Pt nanoparticles were functionalized on the networked ZnO nanowires. In this study, for the functioanlization, γ-ray radiolysis was applied.

View Article and Find Full Text PDF

Bi2O3-decorated In2O3 nanorods were synthesized using a one-step process, and their structure, as well as the effects of decoration of In2O3 nanorods with Bi2O3 on the ethanol gas-sensing properties were examined. The multiple networked Bi2O3-decorated In2O3 nanorod sensor showed responses of 171-1774% at ethanol concentrations of 10-200 ppm at 200 °C. The responses of the Bi2O3-decorated In2O3 nanorod sensor were stronger than those of the pristine-In2O3 nanorod sensors by 1.

View Article and Find Full Text PDF

Unlabelled: TeO2-nanostructured sensors are seldom reported compared to other metal oxide semiconductor materials such as ZnO, In2O3, TiO2, Ga2O3, etc. TeO2/CuO core-shell nanorods were fabricated by thermal evaporation of Te powder followed by sputter deposition of CuO. Scanning electron microscopy and X-ray diffraction showed that each nanorod consisted of a single crystal TeO2 core and a polycrystalline CuO shell with a thickness of approximately 7 nm.

View Article and Find Full Text PDF

We report a dual functional sensing mechanism for ultrasensitive chemoresistive sensors based on SnO2-ZnO core-shell nanowires (C-S NWs) for detection of trace amounts of reducing gases. C-S NWs were synthesized by a two-step process, in which core SnO2 nanowires were first prepared by vapor-liquid-solid growth and ZnO shell layers were subsequently deposited by atomic layer deposition. The radial modulation of the electron-depleted shell layer was accomplished by controlling its thickness.

View Article and Find Full Text PDF

We have devised a sensor system comprising p-CuO/n-ZnO core-shell nanofibers (CS nanofibers) for the detection of reducing gases with a very low concentration. The CS nanofibers were prepared by a two-step process as follows: (1) synthesis of core CuO nanofibers by electrospinning, and (2) subsequent deposition of uniform ZnO shell layers by atomic layer deposition. We have estimated the sensing capabilities of CS nanofibers with respect to CO gas, revealing that the thickness of the shell layer needs to be optimized to obtain the best sensing properties.

View Article and Find Full Text PDF

A new deep acceptor state is identified by density functional theory calculations, and physically activated by an Au ion implantation technique to overcome the high energy barriers. And an acceptor-compensated charge transport mechanism that controls the chemical sensing performance of Au-implanted SnO2 nanowires is established. Subsequently, an equation of electrical resistance is set up as a function of the thermal vibrations, structural defects (Au implantation), surface chemistry (1 ppm NO2), and solute concentration.

View Article and Find Full Text PDF

Room temperature gas sensing ability for low concentrations of benzene was successfully realized with Pt nanoparticle-decorated networked ZnO nanowire sensors. For decoration of Pt nanoparticles, gamma-ray radiolysis was used. The Pt decoration greatly enhanced benzene sensing performances.

View Article and Find Full Text PDF

Networked SnO(2) nanowire sensors were achieved using the selective growth of SnO(2) nanowires and their tangling ability, particularly on on-chip V-groove structures, in an effort to overcome the disadvantages imposed on the conventional trench-structured SnO(2) nanowire sensors. The sensing performance of the V-groove-structured SnO(2) nanowire sensors was highly dependent on the geometrical dimension of the groove, being superior to those of their conventional trench-structured counterparts. Pt nanoparticles were decorated on the surface of the networked SnO(2) nanowires via γ-ray radiolysis to enhance the sensing performances of the V-groove sensors whose V-groove widths had been optimized.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionigd1mafmq6nuo1h1il998gme6jdsacrr): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once