Publications by authors named "Gump J"

The current research examined whether eating disorder risk and the attitudinal elements related to body image predict compulsive buying. A sample of students attending two public universities located in the northeast United States were surveyed. A multiple regression indicated that attitudes related to one's physical appearance, fitness, and health as well as eating disorder risk were predictors of compulsive buying with appearance orientation being the strongest predictor of compulsive buying.

View Article and Find Full Text PDF

Introduction: Pediatric adamantinomatous craniopharyngioma (ACP) is a histologically benign but clinically aggressive brain tumor that arises from the sellar/suprasellar region. Despite a high survival rate with current surgical and radiation therapy (75-95 % at 10 years), ACP is associated with debilitating visual, endocrine, neurocognitive and psychological morbidity, resulting in excheptionally poor quality of life for survivors. Identification of an effective pharmacological therapy could drastically decrease morbidity and improve long term outcomes for children with ACP.

View Article and Find Full Text PDF

In a synthetic lethality/viability screen, we identified the serine-threonine kinase RIP1 (RIPK1) as a gene whose knockdown is highly selected against during growth in normal media, in which autophagy is not critical, but selected for in conditions that increase reliance on basal autophagy. RIP1 represses basal autophagy in part due to its ability to regulate the TFEB transcription factor, which controls the expression of autophagy-related and lysosomal genes. RIP1 activates ERK, which negatively regulates TFEB though phosphorylation of serine 142.

View Article and Find Full Text PDF

We detail here a protocol using tandem-tagged mCherry-EGFP-LC3 (C-G-LC3) to quantify autophagic flux in single cells by ratiometric flow cytometry and to isolate subpopulations of cells based on their relative levels of autophagic flux. This robust and sensitive method measures autophagic flux rather than autophagosome number and is an important addition to the autophagy researcher's array of tools for measuring autophagy. Two crucial steps in this protocol are i) generate cells constitutively expressing C-G-LC3 with low to medium fluorescence and low fluorescence variability, and ii) correctly set up gates and voltage/gain on a properly equipped flow cytometer.

View Article and Find Full Text PDF

Macroautophagy is thought to protect against apoptosis; however, underlying mechanisms are poorly understood. We examined how autophagy affects canonical death receptor-induced mitochondrial outer membrane permeabilization (MOMP) and apoptosis. MOMP occurs at variable times in a population of cells, and this is delayed by autophagy.

View Article and Find Full Text PDF

Autophagy regulates cell death both positively and negatively, but the molecular basis for this paradox remains inadequately characterized. We demonstrate here that transient cell-to-cell variations in autophagy can promote either cell death or survival depending on the stimulus and cell type. By separating cells with high and low basal autophagy using flow cytometry, we demonstrate that autophagy determines which cells live or die in response to death receptor activation.

View Article and Find Full Text PDF

Background: Nucleus free red blood cells are unique to mammals. During their terminal stage of differentiation, mammalian erythroblasts exit the cell cycle and enucleate. We previously found that survivin, a member of the chromosomal passenger complex that is required for cytokinesis, is highly expressed in late non-dividing cells.

View Article and Find Full Text PDF

The therapeutic potential of autophagy for the treatment cancer and other diseases is beset by paradoxes stemming from the complexity of the interactions between the apoptotic and autophagic machinery. The simplest question of how autophagy acts as both a protector and executioner of cell death remains the subject of substantial controversy. Elucidating the molecular interactions between the processes will help us understand how autophagy can modulate cell death, whether autophagy is truly a cell death mechanism, and how these functions are regulated.

View Article and Find Full Text PDF

The human ocular lens is a tissue capable of changing its shape to dynamically adjust the optical power of the eye, a function known as accommodation, which gradually declines with age. This capability is the response of the lens tissue to external forces, which, in turn, is modulated by the biomechanical characteristics of lens tissues. In order to investigate the contributions of lens sclerosis to loss of accommodation, we report on in vitro confocal Brillouin light scattering studies of human ocular lenses spanning over a 30-70 year age range.

View Article and Find Full Text PDF

Cellular uptake of the human immunodeficiency virus TAT protein transduction domain (PTD), or cell-penetrating peptide, has previously been surmised to occur in a manner dependent on the presence of heparan sulfate proteoglycans that are expressed ubiquitously on the cell surface. These acidic polysaccharides form a large pool of negative charge on the cell surface that TAT PTD binds avidly. Additionally, sulfated glycans have been proposed to aid in the interaction of TAT PTD and other arginine-rich PTDs with the cell membrane, perhaps aiding their translocation across the membrane.

View Article and Find Full Text PDF

Background: Gemcitabine incorporation into DNA enhances cleavage complexes in vitro when combined with topoisomerase I inhibitors and demonstrates synergy in cancer cells when given with irinotecan. Topoisomerase I inhibitors require that topoisomerase I interacts with DNA to exert activity.

Methods: Patients who had received previous anthracycline therapy or were not candidates for anthracycline therapy received gemcitabine at a dose of 1000 mg/m2 intravenously over 30 minutes followed by irinotecan at a dose of 100 mg/m2 over 90 minutes on Days 1 and 8 of a 21-day cycle.

View Article and Find Full Text PDF

A 5-year-old boy who initially presented with ALL and relapsed 4 months later with AML was found to have an add(19) in the leukemia cells. FISH revealed that the add(19) was really a cryptic t(l2;l9)(p13.3;p13.

View Article and Find Full Text PDF

Research into the mechanism of protein transduction has undergone a renaissance in the past five years as many groups have sought to understand the behavior of transducing peptides to harness their enormous therapeutic and diagnostic potential. The field has benefited greatly from rigorous cell biological and biophysical studies of the mechanism used by cell penetrating peptides to enter cells and deliver their cargo. The recent identification of fluid phase endocytosis as the mode of cellular entry for TAT and other protein transduction domains has enhanced our understanding of how transduction facilitates intracellular delivery.

View Article and Find Full Text PDF

Purpose: Resistance to topoisomerase (topo) I inhibitors has been related to down-regulation of nuclear target enzyme, whereas sensitization to topo II inhibitors may result from induction of topo II by topo I inhibitors. Here, we evaluated a sequence-specific administration of a topo I inhibitor followed by a topo II inhibitor.

Experimental Design: Twenty-five patients with advanced or metastatic malignancies were treated with increasing doses (0.

View Article and Find Full Text PDF

We investigated the role of the breast cancer resistance protein (BCRP/ABCG2) in drug resistance in multiple myeloma (MM). Human MM cell lines, and MM patient plasma cells isolated from bone marrow, were evaluated for ABCG2 mRNA expression by quantitative polymerase chain reaction (PCR) and ABCG2 protein, by Western blot analysis, immunofluorescence microscopy, and flow cytometry. ABCG2 function was determined by measuring topotecan and doxorubicin efflux using flow cytometry, in the presence and absence of the specific ABCG2 inhibitor, tryprostatin A.

View Article and Find Full Text PDF

The longitudinal acoustic (LA) mode of bulk GexSe1-x glasses is examined in Brillouin scattering (BS) over the 0.15 View Article and Find Full Text PDF

In this study we have investigated the role of topoisomerase (topo) IIalpha trafficking in cellular drug resistance. To accomplish this, it was necessary to separate the influence of cell cycle, drug uptake, topo protein levels, and enzyme trafficking on drug sensitivity. Thus, we developed a cell model (called accelerated plateau) using human myeloma H929 cells that reproducibly translocates topo IIalpha to the cytoplasm.

View Article and Find Full Text PDF

Deciding whether a missense allelic variant affects protein function is important in many contexts. We previously demonstrated that a detailed analysis of p53 intragenic conservation correlates with somatic mutation hotspots. Here we refine these evolutionary studies and expand them to the p16/Ink4a gene.

View Article and Find Full Text PDF

Progression through the eukaryotic cell cycle is driven by the activity of cyclin-dependent kinases. The cyclin D-dependent kinase Cdk4 promotes progression through the G(1) phase of the cell cycle and is deregulated in many human tumors. The tumor suppressor protein p16(INK4A) (p16) forms a complex with Cdk4 and inhibits kinase activity.

View Article and Find Full Text PDF

TP53 is the most commonly mutated gene in human cancer, but TP53 mutations are present in less than 5% of children with acute lymphoblastic leukemia (ALL) at initial presentation. Mutations are detected more frequently in children with relapsed T-cell ALL, but the potential role of TP53 mutations in relapsed B-lineage childhood ALL is not understood as well. The authors determined the nucleotide sequence of amplified DNA from exons 5 to 8 of the TP53 gene in leukemic cells obtained from 17 children with ALL at the time of first bone marrow relapse.

View Article and Find Full Text PDF

This report describes an unusual extramedullary hematologic malignancy in an 18-month-old child who presented with a capillary leak syndrome that evolved into hyperleukocytosis with malignant cells. The circulating tumor cells did not express an antigen profile typical of any subtype of leukemia commonly observed in children. Tumor cells were CD3(-)/CD56(+); had germline TCR genes; and strongly expressed CD30, epithelial membrane antigen, and anaplastic lymphoma kinase (ALK) consistent with a null cell anaplastic large cell lymphoma (ALCL).

View Article and Find Full Text PDF

Galectin-3 is a carbohydrate binding protein involved in multiple processes including cell-cycle regulation and apoptosis. The ability of galectin-3 to protect cells from apoptosis is dependent upon a region of the protein known as a BH-1 domain for its homology to the anti-apoptotic protein Bcl-2. Here, we show that a monoclonal antibody (MAb) to the human tumor suppressor protein p16INK4A recognizes a post-translationally modified form of human galectin-3.

View Article and Find Full Text PDF

The INK4 family of proteins consists of four members which can block progression from the G(1)-to-S phase of the cell cycle by inhibiting the activity of cyclin dependent kinases (cdks) 4 and 6. Although the gene encoding p16(INK4a) is commonly inactivated in human tumors, p18(INK4c) is rarely altered. We show here that overexpression of p18(INK4c) does not block cell cycle progression in a T-cell acute lymphocytic leukemia cell line (CEM) sensitive to p16(INK4a)-mediated G(1) arrest.

View Article and Find Full Text PDF

Histone deacetylases (HDACs) modify nucleosomal histones, have a key role in the regulation of gene transcription, and may be involved in cell-cycle regulation, differentiation and human cancer. Purified recombinant human HDAC1 protein was used to screen a cDNA expression library, and one of the clones identified encoded DNA topoisomerase II (Topo II), an enzyme known to have a role in transcriptional regulation and chromatin organization. Coimmunoprecipitation experiments indicate that HDAC1 and HDAC2 are associated with Topo II in vivo under normal physiological conditions.

View Article and Find Full Text PDF

The resistance of several leukaemic and myeloma cell lines (CCRF, L1210, HL-60, KG-1a and RPMI 8226) to VP-16 was found to increase with cell density and to be maximal (3.5- to 39-fold) in plateau phase cell cultures, as measured by clonogenic and MTT assays. Non-transformed confluent Flow 2000 human fibroblasts and Chinese hamster ovary (CHO) cells were also five- and 15-fold resistant to VP-16 respectively.

View Article and Find Full Text PDF