Publications by authors named "Gumersindo Fernandez Vazquez"

The positive role of melatonin in obesity control and skeletal muscle (SKM) preservation is well known. We recently showed that melatonin improves vastus lateralis muscle (VL) fiber oxidative phenotype. However, fiber type characterization, mitochondrial function, and molecular mechanisms that underlie VL fiber switching by melatonin are still undefined.

View Article and Find Full Text PDF

The role of melatonin in obesity control is extensively accepted, but its mechanism of action is still unclear. Previously we demonstrated that chronic oral melatonin acts as a brown-fat inducer, driving subcutaneous white adipose tissue (sWAT) into a brown-fat-like function (beige) in obese diabetic rats. However, immunofluorescence characterization of beige depots in sWAT and whether melatonin is a beige-fat inducer by differentiation and/or transdifferentiation of white adipocytes are still undefined.

View Article and Find Full Text PDF

Obesity and associated diabetes (diabesity) impair kidney mitochondrial dynamics by augmenting fission and diminishing fusion, which results in mitochondrial and renal dysfunction. Based on available evidence, the antioxidant activities of melatonin may improve impaired renal mitochondrial function in obese diabetic animals by restoring the imbalanced dynamics through inhibiting fission and promoting fusion. Male Zücker diabetic fatty (ZDF) rats and lean littermates (ZL) were orally treated either with melatonin (10 mg/kg BW/day) (M-ZDF and M-ZL) or vehicle (C-ZDF and C-ZL) for 17 weeks.

View Article and Find Full Text PDF

Melatonin limits obesity in rodents without affecting food intake and activity, suggesting a thermogenic effect. Previously we demonstrated that melatonin browns subcutaneous fat in Zücker diabetic fatty (ZDF) rats. Other works pointed to melatonin as a signal that increases brown adipose tissue (BAT) mass and function in rodents.

View Article and Find Full Text PDF

Hepatic mitochondrial dysfunction is thought to play a role in the development of liver steatosis and insulin resistance, which are both common characteristics of obesity and type 2 diabetes mellitus (T2DM). It was hypothesized that the antioxidant properties of melatonin could potentially improve the impaired functions of hepatic mitochondria in diabetic obese animals. Male Zucker diabetic fatty (ZDF) rats and lean littermates (ZL) were given either melatonin (10 mg/kg BW/day) orally for 6 wk (M-ZDF and M-ZL) or vehicle as control groups (C-ZDF and C-ZL).

View Article and Find Full Text PDF

In humans, 2 functionally different types of adipose tissue coexist: white adipose tissue (WAT) and brown adipose tissue (BAT). WAT is involved in energy storage, whereas BAT is involved in energy expenditure. Increased amounts of WAT may contribute to the development of metabolic disorders, such as obesity-associated type 2 diabetes mellitus and cardiovascular diseases.

View Article and Find Full Text PDF

Human life expectancy has increased over the past 50 years due to scientific and medical advances and higher food availability. However, overweight and obesity affect more than 50% of adults and 15% of infants and adolescents. There has also been a marked increase in the prevalence of metabolic syndrome in recent decades, which has been associated with a reduction in nocturnal pineal production of melatonin with aging and an increased risk of coronary diseases, type 2 diabetes mellitus (T2DM) and death.

View Article and Find Full Text PDF

Mitochondrial dysfunction in adipose tissue may contribute to obesity-related metabolic derangements such as type 2 diabetes mellitus (T2DM). Because mitochondria are a target for melatonin action, the goal of this study was to investigate the effects of melatonin on mitochondrial function in white (WAT) and beige inguinal adipose tissue of Zücker diabetic fatty (ZDF) rats, a model of obesity-related T2DM. In this experimental model, melatonin reduces obesity and improves the metabolic profile.

View Article and Find Full Text PDF

Melatonin limits obesity in rodents without affecting food intake and activity, suggesting a thermogenic effect. Identification of brown fat (beige/brite) in white adipose tissue (WAT) prompted us to investigate whether melatonin is a brown-fat inducer. We used Zücker diabetic fatty (ZDF) rats, a model of obesity-related type 2 diabetes and a strain in which melatonin reduces obesity and improves their metabolic profiles.

View Article and Find Full Text PDF

The aim of this study was to investigate the effects of melatonin on low-grade inflammation and oxidative stress in young male Zucker diabetic fatty (ZDF) rats, an experimental model of metabolic syndrome and type 2 diabetes mellitus (T2DM). ZDF rats (n = 30) and lean littermates (ZL) (n = 30) were used. At 6 wk of age, both lean and fatty animals were subdivided into three groups, each composed of 10 rats: naive (N), vehicle treated (V), and melatonin treated (M) (10 mg/kg/day) for 6 wk.

View Article and Find Full Text PDF

Background: Hepatic 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activity, which converts cortisone (inactive) to cortisol, is downregulated in obesity. However, this compensation fails in obese with metabolic abnormalities, such as diabetes. To further characterize the tissue-specific cortisol regeneration in obesity, we have investigated the mRNA expression of genes related to local cortisol production, i.

View Article and Find Full Text PDF

The aim of this study was to investigate the effects of melatonin on glucose homeostasis in young male Zucker diabetic fatty (ZDF) rats, an experimental model of metabolic syndrome and type 2 diabetes mellitus (T2DM). ZDF rats (n=30) and lean littermates (ZL) (n=30) were used. At 6wk of age, both lean and fatty animals were subdivided into three groups, each composed of ten rats: naive (N), vehicle treated (V), and melatonin treated (M) (10mg/kg/day) for 6wk.

View Article and Find Full Text PDF

The study objective was to investigate the effects of melatonin on obesity and obesity-associated systolic hypertension and dyslipidemia in young male Zucker diabetic fatty (ZDF) rats, an experimental model of the metabolic syndrome. ZDF rats (n=30) and lean littermates (ZL) (n=30) were used. At 6wk of age, both lean and fatty animals were subdivided into three groups (n=10): naive (N), vehicle-treated (V), and melatonin-treated (M) (10mg/kg/day) for 6wk.

View Article and Find Full Text PDF

Appropriate expression of the GnRH receptor (GnRH-R) in gonadotrophs is critical for GnRH signaling and hence for gonadotropin secretion and sexual development. In the present work, we have studied the ontogeny of the steady-state GnRH-R mRNA levels in pituitaries of female rats from Day 5 to Day 55, when sexual maturity is attained. Developmental changes of gonadotropin subunit (alpha, FSHbeta, and LHbeta) mRNA levels were also assessed.

View Article and Find Full Text PDF

Appropriate expression of the GnRH receptor (GnRH-R) in gonadotropes is critical for GnRH signaling and hence for gonadotropin secretion and sexual development. In the present work, we have studied the ontogeny of the steady-state GnRH-R mRNA levels in pituitaries of male rats from Day 5 to Day 55, when sexual maturity is attained. Developmental changes of gonadotropin subunit (alpha, FSHbeta, and LHbeta) mRNA levels were also assessed.

View Article and Find Full Text PDF