While in situ experiments are gaining importance for the (mechanical) assessment of metamaterials or materials with complex microstructures, imaging conditions in such experiments are often challenging. The lab-based computed tomography system Xradia 810 Ultra allows for the in situ (time-lapsed) mechanical testing of samples. However, the in situ loading setup of this system limits the image acquisition angle to 140°.
View Article and Find Full Text PDFLubricin, an intrinsically disordered glycoprotein, plays a pivotal role in facilitating smooth movement and ensuring the enduring functionality of synovial joints. The central domain of this protein serves as a source of this excellent lubrication and is characterized by its highly glycosylated, negatively charged, and disordered structure. However, the influence of O-glycans on the viscosity of lubricin remains unclear.
View Article and Find Full Text PDFSci Bull (Beijing)
January 2024
Traditional high strength engineering alloys suffer from serious surface brittleness and inferior wear performance when servicing under sliding contact at cryogenic temperature. Here, we report that the recently emerging CoCrNi multi-principal element alloy defies this trend and presents dramatically enhanced wear resistance when temperature decreases from 273 to 153 K, surpassing those of cryogenic austenitic steels. The temperature-dependent structure characteristics and deformation mechanisms influencing the cryogenic wear resistance of CoCrNi are clarified through microscopic observation and atomistic simulation.
View Article and Find Full Text PDFMolecular dynamics (MD) simulations have been widely used to study flow at molecular scales. Most of this work is devoted to study the departure from continuum fluid mechanics as the confining dimension decreases. Here, we present MD results under conditions where hydrodynamic descriptions typically apply, but focus on the influence of in-plane wavelengths.
View Article and Find Full Text PDFThe local prediction of fatigue damage within polycrystals in a high-cycle fatigue setting is a long-lasting and challenging task. It requires identifying grains tending to accumulate plastic deformation under cyclic loading. We address this task by transcribing ferritic steel microtexture and damage maps from experiments into a microstructure graph.
View Article and Find Full Text PDFLiquid metals (LMs) play a growing role in flexible electronics and connected applications. Here, LMs come into direct contact with metal electrodes thus allowing for corrosion and additional alloying, potentially compromising device stability. Nevertheless, comprehensive studies on the interfacial interaction of the materials are still sparse.
View Article and Find Full Text PDFElastic properties of classical bulk materials can hardly be changed or adjusted in operando, while such tunable elasticity is highly desired for robots and smart machinery. Although possible in reconfigurable metamaterials, continuous tunability in existing designs is plagued by issues such as structural instability, weak robustness, plastic failure and slow response. Here we report a metamaterial design paradigm using gears with encoded stiffness gradients as the constituent elements and organizing gear clusters for versatile functionalities.
View Article and Find Full Text PDFAutomated, reliable, and objective microstructure inference from micrographs is essential for a comprehensive understanding of process-microstructure-property relations and tailored materials development. However, such inference, with the increasing complexity of microstructures, requires advanced segmentation methodologies. While deep learning offers new opportunities, an intuition about the required data quality/quantity and a methodological guideline for microstructure quantification is still missing.
View Article and Find Full Text PDFThe microstructure of the materials constituting a metallic frictional contact strongly influence tribological performance. Being able to tailor friction and wear is challenging due to the complex microstructure evolution associated with tribological loading. Here, we investigate the effect of the strain distribution on these processes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2021
Near the interface of two contacting metallic bodies in relative motion, the microstructure changes. This modified microstructure leads to changes in material properties and thereby influences the tribological behavior of the entire contact. Tribological properties such as the friction coefficient and wear rate are controlled by the microstructure, while the elementary mechanisms for microstructural changes are not sufficiently understood.
View Article and Find Full Text PDFFor mechanical systems in relative motion it would be fascinating if a non-mechanical stimulus could be used to directly control friction conditions. Therefore, different combinations of lubricants and external triggers for tribological influence have already been investigated. We show that when two metallic friction partners are lubricated with ionic liquid mixtures (ILM), consisting of long-chain cation and two different high charge/mass ratio anion containing ILs, the application of an electric impulse induces a permanent change of the frictional response.
View Article and Find Full Text PDFDislocation mediated plastic deformation decisively influences the friction coefficient and the microstructural changes at many metal sliding interfaces during tribological loading. This work explores the initiation of a tribologically induced microstructure in the vicinity of a copper twin boundary. Two distinct horizontal dislocation traces lines (DTL) are observed in their interaction with the twin boundary beneath the sliding interface.
View Article and Find Full Text PDFTribological contacts consume a significant amount of the world's primary energy due to friction and wear in different products from nanoelectromechanical systems to bearings, gears, and engines. The energy is largely dissipated in the material underneath the two surfaces sliding against each other. This subsurface material is thereby exposed to extreme amounts of shear deformation and often forms layered subsurface microstructures with reduced grain size.
View Article and Find Full Text PDFRationally designed artificial materials, called metamaterials, allow for tailoring effective material properties beyond ("meta") the properties of their bulk ingredient materials. This statement is especially true for chiral metamaterials, as unlocking certain degrees of freedom necessarily requires broken centrosymmetry. While the field of chiral electromagnetic/optical metamaterials has become rather mature, the field of elastic/mechanical metamaterials is just emerging and wide open.
View Article and Find Full Text PDFGraphite and other lamellar materials are used as dry lubricants for macroscale metallic sliding components and high-pressure contacts. It has been shown experimentally that monolayer graphene exhibits higher friction than multilayer graphene and graphite, and that this friction increases with continued sliding, but the mechanism behind this remains subject to debate. It has long been conjectured that the true contact area between two rough bodies controls interfacial friction.
View Article and Find Full Text PDFDue to its high diffusivity, hydrogen is often considered a weak inhibitor or even a promoter of dislocation movements in metals and alloys. By quantitative mechanical tests in an environmental transmission electron microscope, here we demonstrate that after exposing aluminium to hydrogen, mobile dislocations can lose mobility, with activating stress more than doubled. On degassing, the locked dislocations can be reactivated under cyclic loading to move in a stick-slip manner.
View Article and Find Full Text PDFThe collision of two cylindrical hydrogen-free diamond-like carbon (DLC) asperities with approximately 60 % sp hybridization has been studied using classical molecular dynamics. The severity of the collision can be controlled by the impact parameter that measures the width of the projected overlap of the two cylinders. For a cylinder radius of = 23 nm, three collisions with = 0.
View Article and Find Full Text PDFTailoring the surface properties of a material for low friction and little wear has long been a goal of tribological research. Since the microstructure of the material under the contact strongly influences tribological performance, the ability to control this microstructure is thereby of key importance. However, there is a significant lack of knowledge about the elementary mechanisms of microstructure evolution under tribological load.
View Article and Find Full Text PDFStructures and materials absorbing mechanical (shock) energy commonly exploit either viscoelasticity or destructive modifications. Based on a class of uniaxial light-weight geometrically nonlinear mechanical microlattices and using buckling of inner elements, either a sequence of snap-ins followed by irreversible hysteretic - yet repeatable - self-recovery or multistability is achieved, enabling programmable behavior. Proof-of-principle experiments on three-dimensional polymer microstructures are presented.
View Article and Find Full Text PDFSurfaces can be slippery or sticky depending on surface chemistry and roughness. We demonstrate in atomistic simulations that regular and random slip patterns on a surface lead to pressure excursions within a lubricated contact that increase quadratically with decreasing contact separation. This is captured well by a simple hydrodynamic model including wall slip.
View Article and Find Full Text PDFLow-temperature deformation of body-centered cubic metals shows a significant amount of plastic slip on planes with low shear stresses, a phenomenon called anomalous slip. Despite progress in atomistic modeling of the consequences of complex stress states on dislocation mobility, the phenomenon of anomalous slip remained elusive. Using in situ Laue microdiffraction and discrete dislocation dynamics in micrometer sized tungsten single crystals, we demonstrate the occurrence of significant anomalous slip.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2014
The morphological texturing of surfaces has demonstrated its high potential to maximize adhesion as well as to reduce friction and wear. A key to understanding such phenomena is a principle known as contact splitting. Here, we extend this concept to the static friction behavior of dimpled surfaces.
View Article and Find Full Text PDF