Publications by authors named "Gulya K"

Regulation of autophagy through the 62 kDa ubiquitin-binding protein/autophagosome cargo protein sequestosome 1 (p62/SQSTM1), whose level is generally inversely proportional to autophagy, is crucial in microglial functions. Since autophagy is involved in inflammatory mechanisms, we investigated the actions of pro-inflammatory lipopolysaccharide (LPS) and anti-inflammatory rosuvastatin (RST) in secondary microglial cultures with or without bafilomycin A1 (BAF) pretreatment, an antibiotic that potently inhibits autophagosome fusion with lysosomes. The levels of the microglia marker protein Iba1 and the autophagosome marker protein p62/SQSTM1 were quantified by Western blots, while the number of p62/SQSTM1 immunoreactive puncta was quantitatively analyzed using fluorescent immunocytochemistry.

View Article and Find Full Text PDF

Temporal and spatial epigenetic modifications in the brain occur during ontogenetic development, pathophysiological disorders, and aging. When epigenetic marks, such as histone methylations, in brain autopsies or biopsy samples are studied, it is critical to understand their postmortem/surgical stability. For this study, the frontal cortex and hippocampus of adult rats were removed immediately (controls) or after a postmortem delay of 15, 30, 60, 90, 120, or 150 min.

View Article and Find Full Text PDF

We previously showed the anti-inflammatory effects of kynurenic acid (KYNA) and its brain-penetrable analog N-(2-(dimethylamino)ethyl)-3-(morpholinomethyl)-4-hydroxyquinoline-2-carboxamide (SZR104) both in vivo and in vitro. Here, we identified the cytomorphological effects of KYNA and SZR104 in secondary microglial cultures established from newborn rat forebrains. We quantitatively analyzed selected morphological aspects of microglia in control (unchallenged), lipopolysaccharide (LPS)-treated (challenged), KYNA- or SZR104-treated, and LPS + KYNA or LPS + SZR104-treated cultures.

View Article and Find Full Text PDF

Ageing is driven by the progressive, lifelong accumulation of cellular damage. Autophagy (cellular self-eating) functions as a major cell clearance mechanism to degrade such damages, and its capacity declines with age. Despite its physiological and medical significance, it remains largely unknown why autophagy becomes incapable of effectively eliminating harmful cellular materials in many cells at advanced ages.

View Article and Find Full Text PDF

Kynurenic acid (KYNA) is implicated in antiinflammatory processes in the brain through several cellular and molecular targets, among which microglia-related mechanisms are of paramount importance. In this study, we describe the effects of KYNA and one of its analogs, the brain-penetrable SZR104 (N-(2-(dimethylamino)ethyl)-3-(morpholinomethyl)-4-hydroxyquinoline-2-carboxamide), on the intracellular distribution and methylation patterns of histone H3 in immunochallenged microglia cultures. Microglia-enriched secondary cultures made from newborn rat forebrains were immunochallenged with lipopolysaccharide (LPS).

View Article and Find Full Text PDF

In December 2019, a new viral disease emerged and quickly spread all around the world. In March 2020, the COVID-19 outbreak was classified as a global pandemic and by June 2021, the number of infected people grew to over 170 million. Along with the patients' mild-to-severe respiratory symptoms, reports on probable central nervous system (CNS) effects appeared shortly, raising concerns about the possible long-term detrimental effects on human cognition.

View Article and Find Full Text PDF

Morphological and functional characterizations of cultured microglia are essential for the improved understanding of their roles in neuronal health and disease. Although some studies (phenotype analysis, phagocytosis) can be carried out in mixed or microglia-enriched cultures, in others (gene expression) pure microglia must be used. If the use of genetically modified microglial cells is not feasible, isolation of resident microglia from nervous tissue must be carried out.

View Article and Find Full Text PDF

Rosuvastatin (RST) is primarily used to treat high cholesterol levels. As it has potentially harmful but not well-documented effects on embryos, RST is contraindicated during pregnancy. To demonstrate whether RST could induce molecular epigenetic events in the brains of newborn rats, pregnant mothers were treated daily with oral RST from the 11th day of pregnancy for 10 days (or until delivery).

View Article and Find Full Text PDF

Kynurenic acid is an endogenous modulator of ionotropic glutamate receptors and a suppressor of the immune system. Since glutamate and microglia are important in the pathogenesis of epilepsy, we investigated the possible action of the synthetic kynurenic acid analogue, SZR104, in epileptic mice and the action of kynurenic acid and SZR104 on the phagocytotic activity of cultured microglia cells. Pilocarpine epilepsy was used to test the effects of SZR104 on morphological microglia transformation, as evaluated through ionized calcium-binding adaptor molecule 1 (Iba1) immunohistochemistry.

View Article and Find Full Text PDF

Inflammation of the cutaneous orofacial tissue can lead to a prolonged alteration of neuronal and nonneuronal cellular functions in trigeminal nociceptive pathways. In this study, we investigated the effects of experimentally induced skin inflammation by dithranol (anthralin) on macrophage activation in the rat trigeminal ganglion. Tissue localization and protein expression levels of ionized calcium-binding adaptor molecule 1 (Iba1), a macrophage/microglia-specific marker, and proliferation/mitotic marker antigen identified by the monoclonal antibody Ki67 (Ki67), were quantitatively analyzed using immunohistochemistry and western blots in control, dithranol-treated, dithranol- and corticosteroid-treated, and corticosteroid-treated trigeminal ganglia.

View Article and Find Full Text PDF

Aspirin, one of the most widely used non-steroidal anti-inflammatory drugs, has extensively studied effects on the cardiovascular system. To reveal further pleiotropic, beneficial effects of aspirin on a number of pro- and anti-inflammatory microglial mechanisms, we performed morphometric and functional studies relating to phagocytosis, pro- and anti-inflammatory cytokine production (IL-1β, tumor necrosis factor-α (TNF-α) and IL-10, respectively) and analyzed the expression of a number of inflammation-related genes, including those related to the above functions, in pure microglial cells. We examined the effects of aspirin (0.

View Article and Find Full Text PDF

Autophagy functions as a main route for the degradation of superfluous and damaged constituents of the cytoplasm. Defects in autophagy are implicated in the development of various age-dependent degenerative disorders such as cancer, neurodegeneration and tissue atrophy, and in accelerated aging. To promote basal levels of the process in pathological settings, we previously screened a small molecule library for novel autophagy-enhancing factors that inhibit the myotubularin-related phosphatase MTMR14/Jumpy, a negative regulator of autophagic membrane formation.

View Article and Find Full Text PDF

Background: Autophagy, a lysosome-mediated self-degradation process of eukaryotic cells, serves as a main route for the elimination of cellular damage [1-3]. Such damages include aggregated, oxidized or misfolded proteins whose accumulation can cause various neurodegenerative pathologies, including Huntington's disease (HD).

Objective: Here we examined whether enhanced autophagic activity can alleviate neurophatological features in a Drosophila model of HD (the transgenic animals express a human mutant Huntingtin protein with a long polyglutamine repeat, 128Q).

View Article and Find Full Text PDF

Microglial activation results in profound morphological, functional and gene expression changes that affect the pro- and anti-inflammatory mechanisms of these cells. Although statins have beneficial effects on inflammation, they have not been thoroughly investigated for their ability to affect microglial functions. Therefore the effects of rosuvastatin, one of the most commonly prescribed drugs in cardiovascular therapy, either alone or in combination with bacterial lipopolysaccharide (LPS), were profiled in pure microglial cultures derived from the forebrains of 18-day-old rat embryos.

View Article and Find Full Text PDF

The roles of calmodulin (CaM), a multifunctional intracellular calcium receptor protein, as concerns selected morphological and functional characteristics of pure microglial cells derived from mixed primary cultures from embryonal forebrains of rats, were investigated through use of the CaM antagonists calmidazolium (CALMID) and trifluoperazine (TFP). The intracellular localization of the CaM protein relative to phalloidin, a bicyclic heptapeptide that binds only to filamentous actin, and the ionized calcium-binding adaptor molecule 1 (Iba1), a microglia-specific actin-binding protein, was determined by immunocytochemistry, with quantitative analysis by immunoblotting. In unchallenged and untreated (control) microglia, high concentrations of CaM protein were found mainly perinuclearly in ameboid microglia, while the cell cortex had a smaller CaM content that diminished progressively deeper into the branches in the ramified microglia.

View Article and Find Full Text PDF

Group 1 metabotropic glutamate subtype 5 receptors (mGluR5) contribute to the control of motor behavior by regulating the balance between excitation and inhibition of outputs in the basal ganglia. The density of these receptors is increased in patients with Parkinson's disease and motor complications. We hypothesized that similar changes may occur in Huntington's disease (HD) and aimed at testing this hypothesis in a preliminary experimental series in postmortem human brain material obtained from HD patients.

View Article and Find Full Text PDF

Selected morphological, molecular and functional aspects of various microglial cell populations were characterized in cell cultures established from the forebrains of E18 rat embryos. The mixed primary cortical cultures were maintained for up to 28days using routine culturing techniques when the microglial cells in the culture were not stimulated or immunologically challenged. During culturing, expansion of the microglial cell populations was observed, as evidenced by quantitative assessment of selected monocyte/macrophage/microglial cell-specific markers (human leukocyte antigen (HLA) DP, DQ, DR, CD11b/c and Iba1) via immunocyto- and histochemistry and Western blot analysis.

View Article and Find Full Text PDF

Alzheimer's disease is associated with a significant decrease in the cholinergic input to the neocortex. In a rat model of this depletion, we analyzed the subsequent long-term changes in cholinergic fiber density in two well-defined areas of the frontal and parietal cortices: Fr1, the primary motor cortex, and HL, the hindlimb area of the somatosensory (parietal) cortex, two cortical cholinergic fields that receive inputs from the nucleus basalis magnocellularis (nBM). A specific cholinergic lesion was induced by the intraparenchymal injection of 192 IgG-saporin into the nBM.

View Article and Find Full Text PDF

In situ hybridization, quantitative reverse transcription polymerase chain reaction (RT-PCR), immunohistochemistry, and Western blot analysis were applied to study the changes in expression of the major nociceptive ion channel transient receptor potential vanilloid type 1 receptor (TRPV1) after the perineural application of capsaicin or nerve transection. In control rats, quantitative morphometric and statistical analyses of TRPV1 protein and mRNA expression in L5 dorsal root ganglion cells revealed distinct populations of small (type C) and small-to-medium (type B) neurons, which showed very high and moderate levels of TRPV1, whereas larger (type A) neurons mostly did not express this receptor. After either transection or capsaicin treatment of the sciatic nerve, immunohistochemistry and Western blotting demonstrated a massive (up to 80%) decrease in the proportion of TRPV1-immunoreactive neurons and TRPV1 protein at all postoperative survival times.

View Article and Find Full Text PDF

One of the major pathological landmarks of Alzheimer's disease and other neurodegenerative diseases is the presence of amyloid deposits in the brain. The early non-invasive visualization of amyloid is a major objective of recent diagnostic neuroimaging approaches, including positron emission tomography (PET), with an eye on follow-up of disease progression and/or therapy efficacy. The development of molecular imaging biomarkers with binding affinity to amyloid in the brain is therefore in the forefront of imaging biomarker and radiochemistry research.

View Article and Find Full Text PDF

Our goal was to characterize the neuroprotective properties of orally administered phosphatidylcholine (PC) in a rodent model of systemic inflammation. Sprague-Dawley rats were killed at 3 h, 1 day, 3 days, or 7 days after i.p.

View Article and Find Full Text PDF

Recent morphological and physiological studies support the assumption that the extrageniculate ascending tectofugal pathways send visual projection to the caudate nucleus (CN) in amniotes. In the present study we investigate the anatomical connection between the visual associative cortex along the anterior ectosylvian sulcus (AES) and the CN in adult domestic cats. An anterograde tracer - fluoro-dextrane-amine - was injected into the AES cortex.

View Article and Find Full Text PDF

The goal of our work was a throughout characterization of the pharmacology of the TIPP-analog, Tyr-Tic-(2S,3R)-β-MePhe-Phe-OH and see if putative δ-opioid receptor subtypes can be distinguished. Analgesic latencies were assessed in mouse tail-flick assays after intrathecal administration. In vitro receptor autoradiography, binding and ligand-stimulated [(35)S]GTPγS functional assays were performed in the presence of putative δ(1)-(DPDPE: agonist, BNTX: antagonist), δ(2)-(agonist: deltorphin II, Ile(5,6)-deltorphin II, antagonist: naltriben) and μ-(DAMGO: agonist) opioid ligands.

View Article and Find Full Text PDF

As part of ongoing work aimed at generating proteolytically stable, readily applicable, radiolabeled endomorphin-2 (EM-2) analogs for elucidation of the topological requirements of peptide binding to μ-opioid receptors, we report here on the synthesis, radiolabeling, binding kinetics and binding site distribution of an EM-2 analog in which Pro(2) is replaced by 2-aminocyclohexanecarboxylic acid, ACHC. [(3)H][(1S,2R)ACHC](2)EM-2 (specific activity 63.49Ci × mmol(-1)) bound specifically to its binding sites with high affinity (K(D) = 0.

View Article and Find Full Text PDF

In the human brain the monoaminooxidase-B enzyme or MAO-B is highly abundant in astrocytes. As astrocyte activity and, consequently, the activity of the MAO-B enzyme, is up-regulated in neuroinflammatory processes, radiolabelled analogues of deprenyl may serve as an imaging biomarker in neuroinflammation and neurodegeneration, including Alzheimer's disease. In the present study [(11)C]-L-deprenyl, the PET radioligand version of L-deprenyl or selegiline®, a selective irreversible MAO-B inhibitor was used in whole hemisphere autoradiographic experiments in human brain sections in order to test the radioligand's binding to the MAO-B enzyme in human brain tissue, with an eye on exploring the radioligand's applicability as a molecular imaging biomarker in human PET studies, with special regard to diagnostic detection of reactive astrogliosis.

View Article and Find Full Text PDF