Publications by authors named "Gulsin Arslan"

Due to their antibacterial activity, chitosan‑carbon dot composites possess great potential for pharmaceuticals, medicine, and food preservation. Conducting a comprehensive study of the interactions between chitosan, carbon dots, and bacteria is crucial to understanding the processes behind applying these composites. This study aimed to immobilize carbon dots (C-dots) synthesized from Elaeagnus angustifolia fruits on chitosan and glass microbeads' surfaces, to characterize the test materials obtained after synthesis and immobilization, and to investigate their antibacterial potentials.

View Article and Find Full Text PDF

This study aimed to investigate the antimicrobial effect of gold nanoparticles capped with meropenem and imipenem against various strains and to evaluate the cytotoxic effect of gold nanoparticles on healthy human colon epithelial cells. Gold nanoparticles were synthesized via the Turkevich method and tested for antimicrobial effects using broth microdilution. Cell culture studies were performed using a cytotoxicity assay with alamarBlue™.

View Article and Find Full Text PDF

Chitosan plays a crucial role in catalysis, environmental remediation, and sustainable chemistry as a renewable and cationic polysaccharide. Chitosan-based metal catalysts are used in a broad range of chemical transformations. In the study, carbon quantum dots (CQDs) were derived from fruits by microwave irradiation following a green chemistry approach.

View Article and Find Full Text PDF

In the study, fluorescent imaging of live cells was performed using fluorescent carbon quantum dots derived from edible mushrooms species; Agaricus bisporus, Pleurotus ostreatus, and Suillus luteus as a fluorophore agent. Carbon quantum dots were synthesized through a facile and low-cost method based on microwave irradiation of dried mushroom samples in hydrogen peroxide solution under optimized conditions (microwave energy, solution type, duration of microwave treatment, amount of mushroom). Upon purification with centrifugation, microfiltration, and dialysis, the lyophilized carbon quantum dots were identified through UV-visible, fluorescence and FT-IR, X-ray photoelectron spectroscopy, X-ray diffraction, high-resolution transmission electron microscopy, and quantum yield calculation.

View Article and Find Full Text PDF

Background: Use of slow-release fertilizers derived from biological sources is important in sustainable agricultural development. Struvite-K (KMgPO ·6H O) is magnesium potassium phosphate mineral that has high potential for use as fertilizer in agriculture. Struvite-K is particularly suitable for slow-release fertilizer systems since struvite-K crystals are sparingly soluble in water.

View Article and Find Full Text PDF

Modified chitin and magnetic particles are two important materials widely used in heavy metal removal studies. Loading of magnetic particles into conventional adsorbents has emerged as a recent convenient way to improve the properties of adsorptive materials. Compared to its deacetylated form chitosan, chitin has very limited use in removal of contaminants because of its insolubility in aqueous environments.

View Article and Find Full Text PDF

This is the first study on production of three dimensional chitinous microcages from ephippial eggs of a microcrustacean, Daphnia longispina (water flea) by keeping the original shape of its chitinous structure. Iron-based magnetic particles were successfully loaded into the chitinous microcages to enhance its heavy metal sorption capacity. The FT-IR, SEM-EDX and TGA analysis proved the purity of chitin and demonstrated that the loading of magnetic particles into the chitinous microcages was achieved.

View Article and Find Full Text PDF

Chitin in the compound eyes of arthropods serves as a part of the visual system. The quality of chitin in such highly specialised body parts deserves more detailed examination. Chitin in the corneal (ommatidial) lenses of dragonfly (Sympetrum fonscolombii) compound eyes was isolated by using the classical chemical method.

View Article and Find Full Text PDF

Designing effective chitosan-based biosorbents from unexploited biomass for heavy metal removal has received much attention over the past decade. Ustilago, loose smut, is a ubiquitous fungal plant pathogen infecting over 4000 species including maize and weed. This study aimed to establish whether the spores of the phytopathogenic microfungi Ustilago spores can be immobilised in cross-linked chitosan matrix, and it reports findings on heavy metal sorption performance of chitosan/Ustilago composite microcapsules.

View Article and Find Full Text PDF

Use of natural polymers as biosorbents for heavy metal removal is advantageous. This paper reports a study aiming to design a novel biosorbent from two biomacromolecules; chitosan, a versatile derivative of chitin, and sporopollenin, a biopolymer with excellent mechanical properties and great resistance to chemical and biological attack. Chitosan/sporopollenin microcapsules were prepared via cross-linking and characterised by employing scanning electron microscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis.

View Article and Find Full Text PDF

In this study, we used Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), thermogravimetric analysis (TGA), X-ray diffractometry (XRD), and scanning electron microscopy (SEM) to investigate chitin structure isolated from both sexes of four grasshopper species. FT-IR, EA, XRD, and TGA showed that the chitin was in the alpha form. With respect to gender, two main differences were observed.

View Article and Find Full Text PDF

Biosorbents have been widely used in heavy metal removal. New resources should be exploited to develop more efficient biosorbents. This study reports the preparation of three novel chitosan microcapsules from pollens of three common, wind-pollinated plants (Acer negundo, Cupressus sempervirens and Populus nigra).

View Article and Find Full Text PDF

In this study waste red mud (bauxite residue) sample obtained from Seydişehir (Konya, Turkey) was evaluated for the synthesis of Fe(3)O(4) nanoparticles (NPs) in ammonia solution that can be used to remove As(V) from both synthetic and natural underground water samples. The synthesized Fe(3)O(4)-NPs were characterized by using TEM, VSM, XRD, SAXS, TGA and FT-IR spectroscopy. The Fe(3)O(4)-NPs assumed a near-sphere shape with an average size of 9 nm.

View Article and Find Full Text PDF

The concentrations of heavy metals and metals (Zn, Pb, Bi, Cd, Ni, Co, Fe, Mn, Mg, Cu, Cr, Ca, Sr, Na, Li, K) were measured in muscle of five species Cyprinus carpio (from Işıklı dam), Scardinius erythrophthalmus (from Işıklı dam), Tinca tinca (from Işıklı dam), C. carpio (from Karacaören dam), Carassius carassius (from Karacaören dam) caught from Işıklı and Karacaören. The highest metal was Na (466.

View Article and Find Full Text PDF

In this study, a new material that adsorbs the metal ions was prepared by modification of the glass beads surfaces with glutaraldehyde. First, the glass beads were etched with 4M NaOH solution. Then, they were reacted with 3-aminopropyl-triethoxysilane (APTES).

View Article and Find Full Text PDF

The facilitated transport of chromium(III) through activated composite membrane (ACM) containing di-(2-ethylhexyl) phosphoric acid (DEHPA) was investigated. DEHPA was immobilised by interfacial polymerisation on polysulfone layer which was deposited on non-woven fabric by using spin coater. Then, ACM was characterised by using scanning electron microscopy (SEM), contact angle measurements and atomic force microscopy (AFM).

View Article and Find Full Text PDF

This paper describes the removal of fluoride from water using granular red mud (GRM) according to batch and column adsorption techniques. For the batch technique, the experiments demonstrated that maximum fluoride removal was obtained at a pH of 4.7 and it took 6h to attain equilibrium and equilibrium time did not depend upon the initial fluoride concentration.

View Article and Find Full Text PDF

The ability of using low-rank Turkish brown coals (Ilgin: BC1, Beyşehir: BC2, and Ermenek: BC3) to remove Cr(VI) from aqueous solutions was studied as a function of contact time, solution pH, temperature, concentration of metal solutions and amount of adsorbent. Their sorption properties were compared with the activated carbon from Chemviron (AQ-30). Adsorption of Cr(VI) uptake is in all cases pH-dependent showing a maximum at equilibrium pH values between 2.

View Article and Find Full Text PDF

The adsorptive removal of boron from aqueous solution by using the neutralized red mud was studied in batch equilibration technique. The effects of pH, adsorbent dosage, initial boron concentration and contact time on the adsorption were investigated. The experiments demonstrated that boron removal was of a little fluctuation in pH range of 2-7 and it takes 20 min to attain equilibrium.

View Article and Find Full Text PDF

The adsorption of copper(II), zinc(II), nickel(II), lead(II), and cadmium(II) on Amberlite IR-120 synthetic sulfonated resin has been studied at different pH and temperatures by batch process. The effects of parameters such as amount of resin, resin contact time, pH, and temperature on the ion exchange separation have been investigated. For the determination of the adsorption behavior of the resin, the adsorption isotherms of metal ions have also been studied.

View Article and Find Full Text PDF