J Biomater Sci Polym Ed
August 2022
A novel non-leaching antibacterial bone cement has been developed and evaluated. An antibacterial furanone derivative was synthesized and covalently coated onto the surface of alumina filler particles, followed by mixing into a conventional poly(methyl methacrylate) bone cement. Flexural strength and bacterial viability were used to evaluate the modified cements.
View Article and Find Full Text PDFA non-leaching antibacterial bone cement has been developed and evaluated. Chlorine- and bromine-containing furanone derivatives were synthesized and covalently coated onto the surface of zirconia filler particles, followed by mixing into a conventional poly(methyl methacrylate) bone cement. Flexural strength and bacterial viability were used to evaluate the modified cements.
View Article and Find Full Text PDFPolym Adv Technol
December 2020
A novel antimicrobial dental self-cured glass-ionomer cement has been developed and evaluated. Alumina filler particles were covalently coated with an antibacterial polymer and blended into a self-cured glass-ionomer cement formulation. Surface hardness and bacterial viability were used to evaluate the modified cements.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
December 2020
An antibacterial dental light-cured glass-ionomer cement has been developed and evaluated. An antibacterial furanone derivative was synthesized and covalently attached onto the surface of alumina filler particles. The formed antibacterial fillers were then mixed into a light-curable glass-ionomer cement formulation.
View Article and Find Full Text PDF