Microrobots are of significant interest due to their smart transport capabilities, especially for precisely targeted delivery in dynamic environments (blood, cell membranes, tumor interstitial matrixes, blood-brain barrier, mucosa, and other body fluids). To perform a more complex micromanipulation in biological applications, it is highly desirable for microrobots to be stimulated with multiple stimuli rather than a single stimulus. Herein, the biodegradable and biocompatible smart micromotors with a Janus architecture consisting of PrecirolATO 5 and polycaprolactone compartments inspired by the anisotropic geometry of tadpoles and sperms are newly designed.
View Article and Find Full Text PDF