Publications by authors named "Guliya Nizameeva"

Development of nanoparticles (NPs) serving as contrast enhancing agents in MRI requires a combination of high contrasting effect with the biosafety and hemocompatibility. This work demonstrates that bovine serum albumin (BSA) molecules bound to paramagnetic Mn ions are promising building blocks of such NPs. The desolvation-induced denaturation of BSA bound with Mn ions followed by the glutaraldehyde-facilitated cross-linking provides the uniform in size 102.

View Article and Find Full Text PDF

In this study, Nickel oxide-based catalysts (NiO) were synthesized and used for the in-situ upgrading process of heavy crude oil (viscosity 2157 mPa·s, and API gravity of 14.1° at 25 °C) in aquathermolysis conditions for viscosity reduction and heavy oil recovery. All characterizations of the obtained nanoparticles catalysts (NiO) were performed through Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), X-Ray and Diffraction (XRD), and ASAP 2400 analyzer from Micromeritics (USA), methods.

View Article and Find Full Text PDF

This work aimed to obtain an optically transparent electrode based on the oriented nanonetworks of nickel in poly(3,4-ethylenedioxythiophene) polystyrene sulfonate matrix. Optically transparent electrodes are used in many modern devices. Therefore, the search for new inexpensive and environmentally friendly materials for them remains an urgent task.

View Article and Find Full Text PDF

The present work demonstrates the optimization of the ligand structure in the series of bis(phosphine oxide) and β-ketophosphine oxide representatives for efficient coordination of Tb and Eu ions with the formation of the complexes exhibiting high Tb- and Eu-centered luminescence. The analysis of the stoichiometry and structure of the lanthanide complexes obtained using the XRD method reveals the great impact of the bridging group nature between two phosphine oxide moieties on the coordination mode of the ligands with Tb and Eu ions. The bridging imido-group facilitates the deprotonation of the imido- bis(phosphine oxide) ligand followed by the formation of tris-complexes.

View Article and Find Full Text PDF

A number of nickel complexes of sodium pectate with varied Ni content have been synthesized and characterized. The presence of the proton conductivity, the possibility of the formation of a dense spatial network of transition metals in these coordination biopolymers, and the immobilization of transition ions in the catalytic sites of this class of compounds make them promising for proton-exchange membrane fuel cells. It has been established that the catalytic system composed of a coordination biopolymer with 20% substitution of sodium ions for divalent nickel ions, Ni (20%)-NaPG, is the leading catalyst in the series of 5, 15, 20, 25, 35% substituted pectates.

View Article and Find Full Text PDF

Data for iron and manganese-containing sodium pectate complexes are reported. Such complexes are potentially capable of exhibiting catalytic properties to the electroreduction of small molecules. Also, the complexes are water-soluble due to their ligands.

View Article and Find Full Text PDF

A selective noble-metal-free molecular catalyst has emerged as a fruitful approach in the quest for designing efficient and stable catalytic materials for CO reduction. In this work, we report that a sodium pectate complex of copper (PG-NaCu) proved to be highly active in the electrocatalytic conversion of CO to CH in water. Stability and selectivity of conversion of CO to CH as a product at a glassy carbon electrode were discovered.

View Article and Find Full Text PDF

Understanding the interaction of ions with organic receptors in confined space is of fundamental importance and could advance nanoelectronics and sensor design. In this work, metal ion complexation of conformationally varied thiacalix[4]monocrowns bearing lower-rim hydroxy (type I), dodecyloxy (type II), or methoxy (type III) fragments was evaluated. At the liquid-liquid interface, alkylated thiacalixcrowns-5(6) selectively extract alkali metal ions according to the induced-fit concept, whereas crown-4 receptors were ineffective due to distortion of the crown-ether cavity, as predicted by quantum-chemical calculations.

View Article and Find Full Text PDF

The paper demonstrates a technique for applying an oriented nickel network to a glass surface. The method is based on the chemical reduction of nickel salt. The shaping and orientation of the resulting system are carried out using a micellar template of a surfactant and a magnetic field.

View Article and Find Full Text PDF