Recently, increasing evidence has shown the association between liver abnormal inflammation and cognition impairment, yet their age-related pathogenesis remains obscure. Here, our study provides a potential mechanistic link between liver macrophage excessive activation and neuroinflammation in aging progression. In aged and LPS-injected C57BL/6J mice, systemic administration of β-chitosan ameliorates hepatic macrophage-driven inflammation and reduces peripheral accumulations of TNF-α and IL-1β.
View Article and Find Full Text PDFWe developed innovative self-amplifying mRNA (sa-mRNA) vaccine based on the derivative of S and Nsp3 proteins, which are considered crucial adhering to human host cells. We performed B-cell, Major histocompatibility complex (MHC) I, and II epitope which were merged with the KK and GPGPG linker. We also incorporated 5' cap sequence, Kozak sequence, replicase sequence, 3'/5' UTR, and poly A tail within the vaccine structure.
View Article and Find Full Text PDFThe glucan extract of () has multiple biological properties, similar to extracts of other natural edible fungi. Drugs traditionally used in cancer treatment are associated with several drawbacks, such as side effects, induction of resistance, and poor prognosis, and many recent studies have focused on polysaccharides extracted from natural sources as alternatives. Our study focuses on the therapeutic role and molecular mechanism of action of in breast cancer progression.
View Article and Find Full Text PDFMalignant melanoma is an invasive and highly aggressive skin cancer that-if diagnosed-poses a serious threat to the patient's health and life. In this work, a novel purified cell-wall polysaccharide (termed Abwp) was obtained from the discarded stipe of Agaricus bisporus (A. bisporus) and characterized to be a novel homogeneous polysaccharide consisted of a β-(1 → 4)- glucosyl backbone with β-(1 → 2) and (1 → 6)-d-glucosyl side-chains.
View Article and Find Full Text PDFLentinan (LNT) isolated from is a vital host defense potentiator previously utilized as an adjuvant in cancer therapy. The present study investigated the effect of LNT on the mouse hepatocellular carcinoma (HCC) cell line Hepa1‑6 and its possible mechanism. Mouse HCC apoptosis and its potential associated mechanism were then explored using and approaches.
View Article and Find Full Text PDFBackground: β-Glucan from Lentinus edodes (LNT), an edible mushroom, possesses strong anticancer activity. However, the therapeutic effects of LNT during the occurrence and progression of breast cancer and their underlying molecular mechanisms have not been elucidated.
Methods: Mouse mammary tumor virus-polyoma middle tumor-antigen (MMTV-PyMT) transgenic mice were used as a breast cancer mouse model.
Glucosamine hydrochloride (GAH), one of the most basic and important derivatives of chitin, is obtained by hydrolysis of chitin in concentrated hydrochloric acid. At present, little is known about how GAH functions in skeletal development. In this report, we demonstrate that GAH, extracted from the cell wall of , acts in a dose-dependent manner to promote not only cartilage and bone development in larvae but also caudal fin regeneration in adult fish.
View Article and Find Full Text PDFBackground: β-glucan from Lentinus edodes (LNT) is a plant-derived medicinal fungus possessing significant bioactivities on anti-tumor. Both hypoxia-induced factor-1α (HIF)-1α and Nur77 have been shown to be involved in the development of breast cancer. However, there is yet no proof of Nur77/HIF-1α involvement in the process of LNT-mediated tumor-inhibition effect.
View Article and Find Full Text PDFNur77 (also called TR3 or NGFI-B), an orphan member of the nuclear receptor superfamily, induces apoptosis by translocating to mitochondria where it interacts with Bcl-2 to convert Bcl-2 from an antiapoptotic to a pro-apoptotic molecule. Nur77 posttranslational modification such as phosphorylation has been shown to induce Nur77 translocation from the nucleus to mitochondria. However, small molecules that can bind directly to Nur77 to trigger its mitochondrial localization and Bcl-2 interaction remain to be explored.
View Article and Find Full Text PDFSelective clearance of damaged mitochondria can reverse pathological status in chronic inflammatory diseases. We recently identified a critical role of nuclear receptor Nur77 and celastrol in priming inflamed mitochondria for autophagy through its mitochondrial targeting and interaction with tumor necrosis factor receptor-associated factor 2 (TRAF2) and the autophagic adaptor p62/SQSTM1.
View Article and Find Full Text PDFRetinoid X receptor-alpha (RXRα) binds to DNA either as homodimers or heterodimers, but it also forms homotetramers whose function is poorly defined. We previously discovered that an N-terminally-cleaved form of RXRα (tRXRα), produced in tumour cells, activates phosphoinositide 3-kinase (PI3K) signalling by binding to the p85α subunit of PI3K and that K-80003, an anti-cancer agent, inhibits this process. Here, we report through crystallographic and biochemical studies that K-80003 binds to and stabilizes tRXRα tetramers via a 'three-pronged' combination of canonical and non-canonical mechanisms.
View Article and Find Full Text PDFMitochondria play an integral role in cell death, autophagy, immunity, and inflammation. We previously showed that Nur77, an orphan nuclear receptor, induces apoptosis by targeting mitochondria. Here, we report that celastrol, a potent anti-inflammatory pentacyclic triterpene, binds Nur77 to inhibit inflammation and induce autophagy in a Nur77-dependent manner.
View Article and Find Full Text PDFBackground And Purpose: The orphan nuclear receptor Nur77 is implicated in the survival and apoptosis of cancer cells. The purpose of this study was to determine whether and how Nur77 serves to mediate the effect of the inflammatory cytokine TNF-α in cancer cells and to identify and characterize new agents targeting Nur77 for cancer therapy.
Experimental Approach: The effects of TNF-α on the expression and function of Nur77 were studied using in vitro and in vivo models.
Retinoid X receptor alpha (RXRα) and its N-terminally truncated version, tRXRα, are widely implicated in cancer development and represent intriguing targets for cancer prevention and treatment. Successful manipulation of RXRα and tRXRα requires the identification of their modulators that could produce therapeutic effects. Here, we report that a class of nitrostyrene derivatives bind to RXRα by a unique mechanism, of which the nitro group of nitrostyrene derivatives and Cys432 of RXRα are required for binding.
View Article and Find Full Text PDFRetinoid X receptor-alpha (RXRα), an intriguing and unique drug target, can serve as an intracellular target mediating the anticancer effects of certain nonsteroidal anti-inflammatory drugs (NSAIDs), including sulindac. We report the synthesis and characterization of two sulindac analogs, K-8008 and K-8012, which exert improved anticancer activities over sulindac in a RXRα-dependent manner. The analogs inhibit the interaction of the N-terminally truncated RXRα (tRXRα) with the p85α subunit of PI3K, leading to suppression of AKT activation and induction of apoptosis.
View Article and Find Full Text PDF