Publications by authors named "Guleyupoglu B"

The objective of this study was to assess the ability of finite element human body models (FEHBMs) and Anthropometric Test Device (ATD) models to estimate occupant injury risk by comparing it with field-based injury risk in far-side impacts. The study used the Global Human Body Models Consortium midsize male (M50-OS+B) and small female (F05-OS+B) simplified occupant models with a modular detailed brain, and the ES-2Re and SID-IIs ATD models in the simulated far-side crashes. A design of experiments (DOE) with a total of 252 simulations was conducted by varying lateral ΔV (10-50kph; 5kph increments), the principal direction of force (PDOF 50°, 60°, 65°, 70°, 75°, 80°, 90°), and occupant models.

View Article and Find Full Text PDF

The pedestrian is one of the most vulnerable road users and comprises approximately 23% of the road crash-related fatalities in the world. To protect pedestrians during Car-to-Pedestrian Collisions (CPC), subsystem impact tests are used in regulations. These tests provide insight but cannot characterize the complex vehicle-pedestrian interaction.

View Article and Find Full Text PDF

A recent emphasis on nontraditional seating and omnidirectional impact directions has motivated the need for deformable representation of the thoracic spine (T-spine) in human body models. The goal of this study was to develop and validate a deformable T-spine for the Global Human Body Models Consortium (GHBMC) M50-O (average male occupant) human model and to demonstrate improved biofidelity. Eleven functional spinal units (FSUs) were developed with deformable vertebrae (cortical and trabecular), spinal and costovertebral ligaments, and intervertebral discs.

View Article and Find Full Text PDF

Objective: The objective of this study is 2-fold. We used a validated human body finite element model to study the predicted chest injury (focusing on rib fracture as a function of element strain) based on varying levels of simulated precrash braking. Furthermore, we compare deterministic and probabilistic methods of rib injury prediction in the computational model.

View Article and Find Full Text PDF

Objective: The objective of this study is to use a validated finite element model of the human body and a certified model of an anthropomorphic test dummy (ATD) to evaluate the effect of simulated precrash braking on driver kinematics, restraint loads, body loads, and computed injury criteria in 4 commonly injured body regions.

Methods: The Global Human Body Models Consortium (GHBMC) 50th percentile male occupant (M50-O) and the Humanetics Hybrid III 50th percentile models were gravity settled in the driver position of a generic interior equipped with an advanced 3-point belt and driver airbag. Fifteen simulations per model (30 total) were conducted, including 4 scenarios at 3 severity levels: median, severe, and the U.

View Article and Find Full Text PDF

Child pedestrian protection deserves more attention in vehicle safety design since they are the most vulnerable road users who face the highest mortality rate. Pediatric Finite Element (FE) models could be used to simulate and understand the pedestrian injury mechanisms during crashes in order to mitigate them. Thus, the objective of the study was to develop a computationally efficient (simplified) six-year-old (6YO-PS) pedestrian FE model and validate it based on the latest published pediatric data.

View Article and Find Full Text PDF

Introduction: A simplified and computationally efficient human body finite element model is presented. The model complements the Global Human Body Models Consortium (GHBMC) detailed 50th percentile occupant (M50-O) by providing kinematic and kinetic data with a significantly reduced run time using the same body habitus.

Methods: The simplified occupant model (M50-OS) was developed using the same source geometry as the M50-O.

View Article and Find Full Text PDF

Medical image data used for the development of computational human body models are often retrospectively acquired, and researchers are unlikely to encounter scans of healthy individuals in specific postures. We prospectively acquired scans in both prone and supine postures from 22 healthy young adults; M:F 1:1, with age, height, and weight of 28.8±7.

View Article and Find Full Text PDF

Background: High-Definition transcranial Direct Current Stimulation (HD-tDCS) allows for non-invasive neuromodulation using an array of compact (approximately 1 cm(2) contact area) "High-Definition" (HD) electrodes, as compared to conventional tDCS (which uses two large pads that are approximately 35 cm(2)). In a previous transcutaneous study, we developed and validated designs for HD electrodes that reduce discomfort over >20 min session with 2 mA electrode current.

Objective: The purpose of this study was to investigate the use of a chemical pretreatment with 6% benzocaine (topical numbing agent) to further reduce subjective discomfort during transcutaneous stimulation and to allow for better sham controlled studies.

View Article and Find Full Text PDF

Transcranial Electrical Stimulation (tES) encompasses all methods of non-invasive current application to the brain used in research and clinical practice. We present the first comprehensive and technical review, explaining the evolution of tES in both terminology and dosage over the past 100 years of research to present day. Current transcranial Pulsed Current Stimulation (tPCS) approaches such as Cranial Electrotherapy Stimulation (CES) descended from Electrosleep (ES) through Cranial Electro-stimulation Therapy (CET), Transcerebral Electrotherapy (TCET), and NeuroElectric Therapy (NET) while others like Transcutaneous Cranial Electrical Stimulation (TCES) descended from Electroanesthesia (EA) through Limoge, and Interferential Stimulation.

View Article and Find Full Text PDF

The field of non-invasive brain stimulation has developed significantly over the last two decades. Though two techniques of noninvasive brain stimulation--transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS)--are becoming established tools for research in neuroscience and for some clinical applications, related techniques that also show some promising clinical results have not been developed at the same pace. One of these related techniques is cranial electrotherapy stimulation (CES), a class of transcranial pulsed current stimulation (tPCS).

View Article and Find Full Text PDF