Publications by authors named "Gulden Camci-Unal"

Bone defects from accidents, congenital conditions, and age-related diseases significantly impact quality of life. Recent advancements in bone tissue engineering (TE) involve biomaterial scaffolds, patient-derived cells, and bioactive agents, enabling functional bone regeneration. Stem cells, obtained from numerous sources including umbilical cord blood, adipose tissue, bone marrow, and dental pulp, hold immense potential in bone TE.

View Article and Find Full Text PDF

Three-dimensional (3D) printing, an additive manufacturing technique, is increasingly used in the field of tissue engineering. The ability to create complex structures with high precision makes the 3D printing of this material a preferred method for constructing personalized and functional materials. However, the challenge lies in developing affordable and accessible materials with the desired physiochemical and biological properties.

View Article and Find Full Text PDF

Hydrogel-based dressings can effectively heal wounds by providing multiple functions, such as antibacterial, anti-inflammatory, and preangiogenic bioactivities. The ability to spray the dressing is important for the rapid and effective coverage of the wound surface. In this study, we developed a sprayable hydrogel-based wound dressing using naturally derived materials: hyaluronic acid and gelatin.

View Article and Find Full Text PDF

Hydrogels are often used as biomimetic matrices for tissue regeneration. The source of the hydrogel is of utmost importance, as it affects the physicochemical characteristics and must be carefully selected to stimulate specific cell behaviors. Naturally derived polymeric biomaterials have inherent biological moieties, such as cell binding and protease cleavage sites, and thus can provide a suitable microenvironment for cells.

View Article and Find Full Text PDF

Bone defects resulting from trauma, disease, or aging present significant challenges in the clinic. Although biomaterial scaffolds for bone-tissue engineering have shown promising results, challenges remain, including the need for adequate mechanical strength and suitable bioactive agents within scaffolds to promote bone formation. Oxygen is a critical factor for successful bone formation, and low oxygen tension inhibits it.

View Article and Find Full Text PDF

Regeneration of large bone defects is a significant clinical challenge with variable success, but tissue engineering strategies are promising for rapid and effective bone regeneration. Maintaining an adequate oxygen level within implanted scaffolds is a major obstacle in bone tissue engineering. We developed a new oxygen-generating scaffold by electrospinning polycaprolactone with calcium peroxide (CaO) nanocuboids (CPNCs) and characterized the physical, chemical, and biological properties of the resulting composites.

View Article and Find Full Text PDF

The limited availability of transplantable organs hinders the success of patient treatment through organ transplantation. In addition, there are challenges with immune rejection and the risk of disease transmission when receiving organs from other individuals. Tissue engineering aims to overcome these challenges by generating functional three-dimensional (3D) tissue constructs.

View Article and Find Full Text PDF

The lack of oxygen supply in engineered constructs has been an ongoing challenge for tissue engineering and regenerative medicine. Upon implantation of an engineered tissue, spontaneous blood vessel formation does not happen rapidly, therefore, there is typically a limited availability of oxygen in engineered biomaterials. Providing oxygen in large tissue-engineered constructs is a major challenge that hinders the development of clinically relevant engineered tissues.

View Article and Find Full Text PDF

Homogeneous vascularization of implanted tissue constructs can extend to 5 weeks, during which cell death can occur due to inadequate availability of oxygen. Researchers are engineering biomaterials that generate and release oxygen in a regulated manner, in an effort to overcome this hurdle. A main limitation of the existing oxygen-generating biomaterials is the uncontrolled release of oxygen, which is ultimately detrimental to the cells.

View Article and Find Full Text PDF

Since the onset of the coronavirus pandemic in December 2019, the SARS-CoV-2 virus has accounted for over 6.3 million lives resulting in the demand to develop novel therapeutic approaches to target and treat SARS-CoV-2. Improved understanding of viral entry and infection mechanisms has led to identifying different target receptors to mitigate infection in the host.

View Article and Find Full Text PDF

This Special Issue celebrates many outstanding quality papers published in over the past six years since its first issue was published in 2015 [...

View Article and Find Full Text PDF

Recent innovations in bone tissue engineering have introduced biomaterials that generate oxygen to substitute vasculature. This strategy provides the immediate oxygen required for tissue viability and graft maturation. Here we demonstrate a novel oxygen-generating tissue scaffold with predictable oxygen release kinetics and modular material properties.

View Article and Find Full Text PDF

Chronic wounds severely affect 1-2% of the population in developed countries. It has been reported that nearly 6.5 million people in the United States suffer from at least one chronic wound in their lifetime.

View Article and Find Full Text PDF

As explained by Wolff's law and the mechanostat hypothesis, mechanical stimulation can be used to promote bone formation. Low intensity pulsed ultrasound (LIPUS) is a source of mechanical stimulation that can activate the integrin/phosphatidylinositol 3-OH kinase/Akt pathway and upregulate osteogenic proteins through the production of cyclooxygenase-2 (COX-2) and prostaglandin E (PGE). This paper analyzes the results of in vitro and in vivo studies that have evaluated the effects of LIPUS on cell behavior within three-dimensional (3D) titanium, ceramic, and hydrogel scaffolds.

View Article and Find Full Text PDF

Scaffold-based approaches for bone regeneration have been studied using a wide range of biomaterials as reinforcing agents to improve the mechanical strength and bioactivity of the 3D constructs. Eggshells are sustainable and inexpensive materials with unique biological and chemical properties to support bone differentiation. The incorporation of eggshell particles within hydrogels yields highly osteoinductive and osteoconductive scaffolds.

View Article and Find Full Text PDF

Bone tissue engineering offers versatile solutions to broaden clinical options for treating skeletal injuries. However, the variety of robust bone implants and substitutes remains largely uninvestigated. The advancements in hydrogel scaffolds composed of natural polymeric materials and osteoinductive microparticles have shown to be promising solutions in this field.

View Article and Find Full Text PDF

Tacrolimus is one of the most effective and prevalent drugs used to combat vascularized composite allotransplantation rejection. We have fabricated a rapid and easy-to-use six-layer paper based microfluidic device using the principles of competitive immunoassays and vertical flow microfluidics for colorimetric detection of tacrolimus in a small volume of blood.

View Article and Find Full Text PDF

The bone marrow (BM) microenvironment actively promotes multiple myeloma (MM) pathogenesis and therapies targeting both cancer cells and the niche are highly effective. We were interested in identifying novel signaling pathways supporting MM-BM crosstalk. Mutations in the transmembrane receptor Roundabout 1 (ROBO1) were recently identified in MM patients, however their functional consequences are uncertain.

View Article and Find Full Text PDF

Recent developments in three-dimensional (3D) printing technology offer immense potential in fabricating scaffolds and implants for various biomedical applications, especially for bone repair and regeneration. As the availability of autologous bone sources and commercial products is limited and surgical methods do not help in complete regeneration, it is necessary to develop alternative approaches for repairing large segmental bone defects. The 3D printing technology can effectively integrate different types of living cells within a 3D construct made up of conventional micro- or nanoscale biomaterials to create an artificial bone graft capable of regenerating the damaged tissues.

View Article and Find Full Text PDF

Cardiovascular disorders (CVDs) are the leading cause of global death, widely occurs due to irreparable loss of the functional cardiomyocytes. Stem cell-based therapeutic approaches, particularly the use of Mesenchymal Stem Cells (MSCs) is an emerging strategy to regenerate myocardium and thereby improving the cardiac function after myocardial infarction (MI). Most of the current approaches often employ the use of various biological and chemical factors as cues to trigger and modulate the differentiation of MSCs into the cardiac lineage.

View Article and Find Full Text PDF

Oxygen supply is essential for the long-term viability and function of tissue engineered constructs in vitro and in vivo. The integration with the host blood supply as the primary source of oxygen to cells requires 4 to 5 weeks in vivo and involves neovascularization stages to support the delivery of oxygenated blood to cells. Consequently, three-dimensional (3D) encapsulated cells during this process are prone to oxygen deprivation, cellular dysfunction, damage, and hypoxia-induced necrosis.

View Article and Find Full Text PDF

Introduction: We developed low-cost, portable paper-based diagnostic devices for detection of human immunoglobulin M (IgM) and immunoglobulin G (IgG) in serum without any sample preparation. These devices can be used to help identify presence of diseases, used to provide rapid results (<5 minutes), readily used by untrained personnel, employed in austere environments, configured to obtain multiplexed assays, and easily disposed of.

Materials And Methods: We successfully accomplished colorimetric detection of human IgG and human IgM using a sandwich-style assay within the microfluidic paper device via vertical flow immunoassay configuration.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionr5udqupqt1hats6n8mfmjgnl9manmbm2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once