Unlocking the potential of metal nanoparticles (NPs) in biomedical applications represents a leading endeavor in contemporary research. Among these, gold NPs (AuNPs) and silver NPs (AgNPs) have shown promising strides in combatting complex neurodegenerative ailments like Alzheimer's disease. Yet, the unexplored realm of bimetallic Au/Ag-NP harbors immense potential, concealing undiscovered opportunities for enhanced therapeutic effectiveness through the synergistic interaction of metal ions.
View Article and Find Full Text PDFThe major drawbacks of metal-based implants are weak osseointegration and post-operational infections. These limitations restrict the long-term use of implants that may cause severe tissue damage and replacement of the implant. Recent strategies to enhance the osseointegration process require an elaborate fabrication process and suffer from post-operative complications.
View Article and Find Full Text PDFThree unique hydrazone-based small-molecule-activatable photosensitizers were designed and synthesized. Two of them work efficiently in a low-pH environment, resembling the microenvironment of the cancerous tissues. The activation pathway is unique and based on hydrazone bond cleavage.
View Article and Find Full Text PDFAs has been reported many times before, the two-dimensional (2D) cell culture techniques used today are far from modeling native tissue environments. Therefore, tremendous amounts of effort were devoted to developing three-dimensional (3D) cell cultures with high tissue resemblance. Whereas, these techniques suffer from elaborate preparation processes, batch-to-batch variations, unnatural components, chemical modifications, side products, static culture conditions, or complex reactor systems.
View Article and Find Full Text PDFEnzyme mimicry is a topic of considerable interest in the development of multifunctional biomimetic materials. Mimicking enzyme activity is a major challenge in biomaterials research, and artificial analogs that simultaneously recapitulate the catalytic and metabolic activity of native enzymes are considered to be the ultimate goal of this field. This consensus may be challenged by self-assembling multifunctional nanostructures to develop close-to-fidelity enzyme mimics.
View Article and Find Full Text PDFTurk J Chem
August 2021
Artificial catalyst studies were always stayed at the kinetics investigation level, in this work bioactivity of designed catalyst were shown by the induction of biomineralization of the cells, indicating the possible use of enzyme mimics for biological applications. The development of artificial enzymes is a continuous quest for the development of tailored catalysts with improved activity and stability. Understanding the catalytic mechanism is a replaceable step for catalytic studies and artificial enzyme mimics provide an alternative way for catalysis and a better understanding of catalytic pathways at the same time.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2021
The design of catalysts with greater control over catalytic activity and stability is a major challenge with substantial impact on fundamental chemistry and industrial applications. Due to their unparalleled diversity, selectivity, and efficiency, enzymes are promising models for next-generation catalysts, and considerable efforts have been devoted to incorporating the principles of their mechanisms of action into artificial systems. We report a heretofore undocumented catalyst design that introduces fullerenes to the field of biocatalysis, which we refer to as , and that emulates enzymatic active sites through multifunctional self-assembled nanostructures.
View Article and Find Full Text PDFLower back pain (LBP) is a prevalent spinal symptom at the lumbar region of the spine, which severely effects quality of life and constitutes the number one cause of occupational disability. Degeneration of the intervertebral disc (IVD) is one of the well-known causes contributing to the LBP. Therapeutic biomaterials inducing IVD regeneration are promising candidates for IVD degeneration treatments.
View Article and Find Full Text PDFPromotion of neurite outgrowth is an important limiting step for regeneration in nerve injury and depends strongly on the local expression of nerve growth factor (NGF). The rational design of bioactive materials is a promising approach for the development of novel therapeutic methods for nerve regeneration, and biomaterials capable of presenting NGF to nerve cells are especially suitable for this purpose. In this study, we show bioactive peptide amphiphile (PA) nanofibers capable of promoting neurite outgrowth by displaying high density binding epitopes for NGF.
View Article and Find Full Text PDFDentin phosphoprotein (DPP) is a major component of the dentin matrix playing crucial role in hydroxyapatite deposition during bone mineralization, making it a prime candidate for the design of novel materials for bone and tooth regeneration. The bioactivity of DPP-derived proteins is controlled by the phosphorylation and dephosphorylation of the serine residues. Here an enzyme-responsive peptide nanofiber system inducing biomineralization is demonstrated.
View Article and Find Full Text PDFEssential amino acids in catalytic sites of native enzymes are important in nature inspired catalyst designs. Active sites of enzymes contain the coordinated assembly of multiple amino acids, and catalytic action is generated by the dynamic interactions among multiple residues. However, catalysis studies are limited by the complex and dynamic structure of the enzyme; and it is difficult to exclusively attribute a given function to a specific residue.
View Article and Find Full Text PDFUnderstanding complex cellular functions requires study and tracking of biomolecules such as proteins, glycans, and lipids in their natural environment. Herein, we report the first supramolecular nanocatalyst for bioorthogonal click reaction to label live cells. This biocompatible and biodegradable nanocatalyst was formed by self-assembled peptide nanofibers complexed with copper ions.
View Article and Find Full Text PDFRecognition of molecules and regulation of extracellular matrix synthesis are some of the functions of enzymes in addition to their catalytic activity. While a diverse array of enzyme-like materials have been developed, these efforts have largely been confined to the imitation of the chemical structure and catalytic activity of the enzymes, and it is unclear whether enzyme-mimetic molecules can also be used to replicate the matrix-regulatory roles ordinarily performed by natural enzymes. Self-assembled peptide nanofibers can provide multifunctional enzyme-mimetic properties, as the active sequences of the target enzymes can be directly incorporated into the peptides.
View Article and Find Full Text PDFAdv Healthc Mater
September 2014
Recent advances in understanding of cell-matrix interactions and the role of the extracellular matrix (ECM) in regulation of cellular behavior have created new perspectives for regenerative medicine. Supramolecular peptide nanofiber systems have been used as synthetic scaffolds in regenerative medicine applications due to their tailorable properties and ability to mimic ECM proteins. Through designed bioactive epitopes, peptide nanofiber systems provide biomolecular recognition sites that can trigger specific interactions with cell surface receptors.
View Article and Find Full Text PDFRemarkably versatile chemistry of Bodipy dyes allows the design and straightforward synthesis of multivalent-multitopic derivatives, which, with judicious selection of metal ion-ligand pairs based on known affinities, affords control and manipulation of photoinduced electron transfer and internal charge transfer processes as desired. We have demonstrated that metal ions acting as modulators (or inputs, in digital design parlance) can generate absorbance changes in accordance with the operation of a half-adder. In addition, an AND logic gate in the emission mode was delivered using a different binucleating arrangement of ligands.
View Article and Find Full Text PDF