Spectrochim Acta A Mol Biomol Spectrosc
July 2022
In this article, IR-induced and tunneling-driven reactions observed in cryogenic matrices are described in a historical perspective, the entangling of the two types of processes being highlighted. The story of this still ongoing fascinating scientific endeavor is presented here following closely our own involvement in the field for more than 30 years, and thus focuses mostly on our work. It is, because of this reason, also an incomplete story.
View Article and Find Full Text PDFA new methoxy-substituted ortho-hydroxyaryl Schiff base, 4-(3-methoxy-2-hydroxybenzylidene-amino) phenol was synthesized from 4-aminophenol and 2-hydroxy-3-methoxybenzaldehyde in methanol solution and characterized by H-NMR, C-NMR and infrared spectroscopies and elemental analysis. The compound was isolated in a cryogenic (10 K) argon matrix, and the analysis of the infrared spectrum of the matrix-isolated compound revealed that it corresponds to the E-enol-imine isomeric form, with 3 different conformers being present in the matrix. These conformers share as common structural features the conformation of the free hydroxyl group (trans relatively to the para-substituent of the ring) and the presence of an OHN intramolecular H-bond involving the methoxy-substituted phenol ring and the azomethine bridge, while they differ in the orientation of the methoxy-substituent group.
View Article and Find Full Text PDFThiabendazole (TBZ) is a substance which has been receiving multiple important applications in several domains, from medicine and pharmaceutical sciences, to agriculture and food industry. Here, a comprehensive multi-technique investigation on the molecular and crystal properties of TBZ is reported. In addition, a new solvate of the compound is described and characterized structurally, vibrationally and thermochemically for the first time.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2016
The structural, vibrational, and photochemical study of 1-methylhydantoin (1-MH, C4H6N2O2) was undertaken by matrix isolation infrared spectroscopy (in argon matrix; 10 K), complemented by quantum chemical calculations performed at the DFT(B3LYP)/6-311++G(d,p) level of approximation. The theoretical calculations yielded the Cs symmetry structure, with planar heavy atom skeleton, as the minimum energy structure on the potential energy surface of the molecule. The electronic structure of this minimum energy structure of 1-MH was then studied in detail by means of the natural bond orbital (NBO) and atoms in molecules (AIM) approaches, allowing for the elucidation of specific characteristics of the molecule's σ and π electronic systems.
View Article and Find Full Text PDFHydantoin (C(3)H(4)N(2)O(2), 2,4-imidazolidinedione) was isolated in argon matrix at 10 K and its infrared spectrum and unimolecular photochemistry were investigated. The molecular structure of the compound was studied both at the DFT(B3LYP) and MP2 levels of approximation with valence triple- and quadruple-ζ basis sets (6-311++G(d,p); cc-pVQZ). It was concluded that the minima in the potential energy surfaces of the molecule correspond to C(1) symmetry structures.
View Article and Find Full Text PDF