Publications by authors named "Gulcan Akgul"

Spontaneous and sensory-evoked activity sculpts developing circuits. Yet, how these activity patterns intersect with cellular programs regulating the differentiation of neuronal subtypes is not well understood. Through electrophysiological and in vivo longitudinal analyses, we show that C-X-C motif chemokine ligand 14 (Cxcl14), a gene previously characterized for its association with tumor invasion, is expressed by single-bouquet cells (SBCs) in layer I (LI) of the somatosensory cortex during development.

View Article and Find Full Text PDF

Type I lissencephaly is a neuronal migration disorder caused by haploinsuffiency of the (mouse: ) gene and is characterized by brain malformation, developmental delays, and epilepsy. Here, we investigate the impact of mutation on the cellular migration, morphophysiology, microcircuitry, and transcriptomics of mouse hippocampal CA1 parvalbumin-containing inhibitory interneurons (PV+INTs). We find that WT PV+INTs consist of two physiological subtypes (80% fast-spiking (FS), 20% non-fast-spiking (NFS)) and four morphological subtypes.

View Article and Find Full Text PDF

Somatic mutations have emerged as the likely cause of focal epilepsies associated with developmental malformations and epilepsy-associated glioneuronal tumors (GNT). Somatic BRAFV600E mutations in particular have been detected in the majority of low-grade neuroepithelial tumors (LNETS) and in neurons in focal cortical dysplasias adjacent to epilepsy-associated tumors. Furthermore, conditional expression of an activating BRAF mutation in neocortex causes seizures in mice.

View Article and Find Full Text PDF

Inhibitory interneurons derived from the medial ganglionic eminence represent the largest cohort of GABAergic neurons in the hippocampus. In the CA1 hippocampus excitatory synapses onto these cells comprise GluA2-lacking, calcium-permeable AMPARs. Although synaptic transmission is not established until early in their postnatal life, AMPARs are expressed early in development, however their role is enigmatic.

View Article and Find Full Text PDF

Glutamate receptor-mediated recruitment of GABAergic inhibitory interneurons is a critical determinant of network processing. Early studies observed that many, but not all, interneuron glutamatergic synapses contain AMPA receptors that are GluA2-subunit lacking and Ca(2+) permeable, making them distinct from AMPA receptors at most principal cell synapses. Subsequent studies demonstrated considerable alignment of synaptic AMPA and NMDA receptor subunit composition within specific subtypes of interneurons, suggesting that both receptor expression profiles are developmentally and functionally linked.

View Article and Find Full Text PDF

Fast-spiking parvalbumin (PV)-positive interneurons in layers 2/3 of the visual cortex regulate gain control and tuning of visual processing. Synapse-associated protein 97 (SAP97) belongs to a family of proteins that have been implicated in regulating glutamatergic synaptic transmission at pyramidal-to-pyramidal connections in the nervous system. For PV interneurons in mouse visual cortex, the expression of SAP97 is developmentally regulated, being expressed in almost all juvenile but only a fraction, ~40%, of adult PV interneurons.

View Article and Find Full Text PDF

Microglia are the immunocompetent cells of the central nervous system. In the physiological setting, their highly motile processes continually survey the local brain parenchyma and transiently contact synaptic elements. Although recent work has shown that the interaction of microglia with synapses contributes to synaptic remodeling during development, the role of microglia in synaptic physiology is just starting to get explored.

View Article and Find Full Text PDF

The input, processing, and output characteristics of inhibitory interneurons help shape information flow through layers 2/3 of the visual cortex. Parvalbumin (PV)-positive interneurons modulate and synchronize the gain and dynamic responsiveness of pyramidal neurons. To define the diversity of PV interneurons in layers 2/3 of the developing visual cortex, we characterized their passive and active membrane properties.

View Article and Find Full Text PDF

Ionotropic glutamate receptors (GluRs) are ligand-gated ion channels with a modular structure. The ion channel itself shares structural similarity, albeit an inverted membrane topology, with P-loop channels. Like P-loop channels, prokaryotic GluR subunits (e.

View Article and Find Full Text PDF

GABAergic interneurons are key elements regulating the activity of local circuits, and abnormal inhibitory circuits are implicated in certain psychiatric and neurodevelopmental diseases. The glutamatergic input that interneurons receive is a key determinant of their activity, yet its molecular structure and development, which are often distinct from those of glutamatergic input to pyramidal cells, are poorly defined. The membrane-associated guanylate kinase (MAGUK) homologs PSD-95/SAP90, PSD-93/chapsyn110, SAP97, and SAP102 are central organizers of the postsynaptic density at excitatory synapses on pyramidal neurons.

View Article and Find Full Text PDF

Background: Androgen receptor (AR) and the phosphatidylinositol-3 kinase (PI3K) signaling are two of the most important pathways implicated in prostate cancer. Previous work has shown that there is crosstalk between these two pathways; however, there are conflicting findings and the molecular mechanisms are not clear. Here we studied the AR-PI3K pathway crosstalk in prostate cancer cells in vitro as well as in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to investigate how lipooligosaccharide (LOS) affects the ability of Moraxella catarrhalis to cling to human throat cells.
  • Researchers used two strains of the bacteria: the original strain 2951 and a mutant strain 2951 galE.
  • The findings indicate that while the P(k) epitope of LOS is not directly responsible for adhesion, it significantly influences the initial attachment process due to its surface charge.
View Article and Find Full Text PDF