J Tissue Eng
October 2024
Stem cell factors (SCFs) are pivotal factors existing in both soluble and membrane-bound forms, expressed by endothelial cells (ECs) and fibroblasts throughout the body. These factors enhance cell growth, viability, and migration in multipotent cell lineages. The preferential expression of SCF by arteriolar ECs indicates that arterioles create a unique microenvironment tailored to hematopoietic stem cells (HSCs).
View Article and Find Full Text PDFOne of the bacterial infections caused by tympanic membrane perforation is otitis media (OM). Middle ear inflammation causes continuous pain and can be accompanied by aftereffects such as facial nerve paralysis if repeated chronically. Therefore, it is necessary to develop an artificial tympanic membrane (TM) that can effectively regenerate the eardrum due to the easy implantation and removal of OM inflammation.
View Article and Find Full Text PDFThe increasing demand for natural and safer alternatives to traditional hair dyes has led to the investigation of nanomaterials as potential candidates for hair coloring applications. MXene nanosheets have emerged as a promising alternative in this context due to their unique optical and electronic properties. In this study, we aimed to evaluate the potential of TiCT (T = -O, -OH, -F, ) MXene nanosheets as a hair dye.
View Article and Find Full Text PDFBackground: Mesenchymal stem cells (MSCs) are undifferentiated cells that can differentiate into specific cell lineages when exposed to the right conditions. The ability of MSCs to differentiate into particular cells is considered very important in biological research and clinical applications. MSC spheroids are clusters of MSCs cultured in three dimensions, which play an important role in enhancing the proliferation and differentiation of MSCs.
View Article and Find Full Text PDFIn the original publication by Khan et al [...
View Article and Find Full Text PDFSaponins are natural compounds found in plants and have a diverse range of applications. However, the therapeutic potential of saponins in regulating cytotoxicity, angiogenesis, and inflammation in mammalian cells is yet to be explored. Here, we investigated the therapeutic effects of saponins from green tea by exploring the cytotoxic effects of saponins by inducing apoptosis in the human cancer cell lines hepatocellular carcinoma (HEPG2) and colorectal adenocarcinoma (HT29).
View Article and Find Full Text PDF