In this study, we characterized the fatty acid production in Neochloris aquatica at transcriptomics and biochemical levels under limiting, normal, and excess nitrate concentrations in different growth phases. At the stationary phase, N. aquatica mainly produced saturated fatty acids such as stearic acid under the limiting nitrate concentration, which is suitable for biodiesel production.
View Article and Find Full Text PDFDrought stress is one of the main environmental factors that affects growth and productivity of crop plants, including lentil. To gain insights into the genome-wide transcriptional regulation in lentil root and leaf under short- and long-term drought conditions, we performed RNA-seq on a drought-sensitive lentil cultivar (Lens culinaris Medik. cv.
View Article and Find Full Text PDFIn this study, we applied a second round of random mutagenesis using ethyl methanesulfonate to further increase the lipid productivity of a Chlorella vulgaris mutant strain. We generated a mutant (UV715-EMS25) with a lipid content and biomass that were respectively 67% and 35% higher than those of the wild type (WT). The highest achieved lipid productivity in UV715-EMS25 was 91 mg L day.
View Article and Find Full Text PDFADP-glucose pyrophosphorylase (AGPase) is a key allosteric enzyme in plant starch biosynthesis. Plant AGPase is a heterotetrameric enzyme that consists of large (LS) and small subunits (SS), which are encoded by two different genes. In this study, we showed that the conversion of Glu to Gly at position 370 in the LS of AGPase alters the heterotetrameric stability along with the binding properties of substrate and effectors of the enzyme.
View Article and Find Full Text PDFADP-glucose pyrophosphorylase (AGPase) is a key allosteric enzyme in plant starch biosynthesis. Plant AGPase is a heterotetrameric enzyme that consists of large (LS) and small subunits (SS), which are encoded by two different genes. Computational and experimental studies have revealed that the heterotetrameric assembly of AGPase is thermodynamically weak.
View Article and Find Full Text PDFADP-glucose pyrophosphorylase (AGPase) is a key enzyme in plant starch biosynthesis. It contains large (LS) and small (SS) subunits encoded by two different genes. In this study, we explored the transcriptional regulation of both the LS and SS subunits of AGPase in stem and leaf under different photoperiods length in lentil.
View Article and Find Full Text PDF