Traits with intuitive names, a clear scope and explicit description are essential for all trait databases. The lack of unified, comprehensive, and machine-readable plant trait definitions limits the utility of trait databases, including reanalysis of data from a single database, or analyses that integrate data across multiple databases. Both can only occur if researchers are confident the trait concepts are consistent within and across sources.
View Article and Find Full Text PDFActa Endocrinol (Buchar)
January 2022
The discovery of the cannabinoid receptors CB and CB in 1990 and 1993, respectively, as well as of the two main endocannabinoids, anandamide in 1992 and 2-arachidonylglycerol in 1995, was an important step in identifying the strongest homeostatic system in the human body, namely the endocannabinoid system. Ever since, research has highlighted the crucial part played by this system in all the reproduction stages: folliculogenesis, spermatogenesis, oogenesis, fecundation, transport of the egg through the fallopian tubes, blastocyte implantation and pregnancy progression, as well as its implications in the physiopathology of the reproductive system: in endometriosis, ectopic pregnancy, miscarriage, preeclampsia, endometrial cancer, polycystic ovary syndrome, ovarian cancer. A special attention must be paid to the phytocannabinoids, natural components originating especially from the Cannabis plant inflorescences, whose medical effects are well-established nowadays with also acting on the receptors of the endocannabinoid system.
View Article and Find Full Text PDFPloidy and species range size or threat status have been linked to variation in phenotypic and phenological seed and seedling traits, including seed size, germination rate (speed) and seedling stature. There is surprisingly little known about the ecological outcomes of relationships between ploidy, key plant traits and the drivers of range size. Here we determined whether ploidy and range size in , a genus of shrubs that includes many threatened species, are associated with variation in seed and seedling traits that might limit the regeneration performance of obligate seeders in fire-prone systems.
View Article and Find Full Text PDFAustralia's 2019-2020 'Black Summer' bushfires burnt more than 8 million hectares of vegetation across the south-east of the continent, an event unprecedented in the last 200 years. Here we report the impacts of these fires on vascular plant species and communities. Using a map of the fires generated from remotely sensed hotspot data we show that, across 11 Australian bioregions, 17 major native vegetation groups were severely burnt, and up to 67-83% of globally significant rainforests and eucalypt forests and woodlands.
View Article and Find Full Text PDFPolyploidy (the state of having more than two genome copies) is widely distributed in flowering plants and can vary within species, with polyploid races often associated with broad ecological tolerances. Polyploidy may influence within-species variation in seed development, germination and establishment. We hypothesized that interactions between polyploidy and the seed developmental environment would affect subsequent dormancy, germination and early growth traits, particularly in stressful environments.
View Article and Find Full Text PDFType 2 diabetes, one of the most frequent chronic diseases, has an important effect on bone metabolism, with most studies reporting an increased prevalence of fractures in these patients despite an apparently increased bone mineral density. Most probable explanation is an alteration of bone structure/quality with increased fragility but the different diabetes medications influence the risk of fracture. While metformin and incretin-based therapies are safe, thiazolidinediones and canagliflozin (sodium-glucose cotransporter-2 inhibitor) negatively impact bone metabolism and should be avoided in subjects at increased risk of fractures.
View Article and Find Full Text PDFSpecies' movements affect their response to environmental change but movement knowledge is often highly uncertain. We now have well-established methods to integrate movement knowledge into conservation practice but still lack a framework to deal with uncertainty in movement knowledge for environmental decisions. We provide a framework that distinguishes two dimensions of species' movement that are heavily influenced by uncertainty: about movement and of movement to environmental decisions.
View Article and Find Full Text PDFPlant establishment and subsequent persistence are strongly influenced by germination strategy, especially in temporally and spatially heterogeneous environments. Germination strategy determines the plant's ability to synchronise germination timing and seedling emergence to a favourable growing season and thus variation in germination strategy within species may be key to persistence under more extreme and variable future climates. However, the determinants of variation in germination strategy are not well resolved.
View Article and Find Full Text PDFTrait-based approaches have improved our understanding of plant evolution, community assembly and ecosystem functioning. A major challenge for the upcoming decades is to understand the functions and evolution of early life-history traits, across levels of organization and ecological strategies. Although a variety of seed traits are critical for dispersal, persistence, germination timing and seedling establishment, only seed mass has been considered systematically.
View Article and Find Full Text PDFSubstantial advances have been made in our understanding of the movement of species, including processes such as dispersal and migration. This knowledge has the potential to improve decisions about biodiversity policy and management, but it can be difficult for decision makers to readily access and integrate the growing body of movement science. This is, in part, due to a lack of synthesis of information that is sufficiently contextualized for a policy audience.
View Article and Find Full Text PDFType 1 diabetes (T1DM) is a common, chronic disease with autoimmune pathogeny, conditioned by genetic factors. Class II HLA DR and DQ and insulin gene polymorphisms encode for most of the T1DM genetic susceptibility. We have previously shown that class I alleles of the insulin gene INS-VNTR locus are strongly associated with T1DM in the Romanian population.
View Article and Find Full Text PDFJ Cell Mol Med
January 2005
Most cases of type 1 diabetes (T1DM) are due to an immune-mediated destruction of the pancreatic beta cells, a process that is conditioned by multiple genes and environmental factors. The main susceptibility genes are represented by the class II HLA-DRB1 and DQB1 alleles. The aim of our study was to reconfirm the contribution of HLA-DQB1 polymorphisms to T1DM genetic susceptibility for the Romanian population.
View Article and Find Full Text PDF