Mastication trait of citrus significantly influences the fruit's overall quality and consumer preference. The accumulation of cellulose in fruits significantly impacts the mastication trait of citrus fruits, and the glycoside hydrolase 9 (GH9) family plays a crucial role in cellulose metabolism. In this study, we successfully identified 32 GH9 genes from the Citrus sinensis genome and subsequently conducted detailed bioinformatics analyses of the GH9 family.
View Article and Find Full Text PDFBackground: Citrus is one of the most important fresh fruit crops worldwide. Juice sac granulation is a physiological disorder, which leads to a reduction in soluble solid concentration, total sugar, and titratable acidity of citrus fruits. Pectin methylesterase (PME) catalyzes the de-methylesterification of homogalacturonans and plays crucial roles in cell wall modification during plant development and fruit ripening.
View Article and Find Full Text PDFApples () are rich in flavonols, and 5-aminolevulinic acid (ALA) plays an important role in the regulation of plant flavonoid metabolism. To date, the underlying mechanism of ALA promoting flavonol accumulation is unclear. Flavonol synthase (FLS) is a key enzyme in flavonol biosynthesis.
View Article and Find Full Text PDFValencia orange (Citrus sinensis Osbeck) (VO) is a type of late-ripening sweet orange whose ripening occurs 4 to 5 months later than that of the mid-ripening common sweet orange (CO). Notably, the mastication trait of VO fruit is inferior to that of CO fruit. To date, how inferior pulp mastication trait forms in VO has not been determined.
View Article and Find Full Text PDFCitrus fruit has a unique structure with soft leathery peel and pulp containing vascular bundles and several segments with many juice sacs. The function and morphology of each fruit tissue are different. Therefore, analysis at the organ-wide or mixed-tissue level inevitably obscures many tissue-specific phenomena.
View Article and Find Full Text PDFCitrus sinensis fruit is a type of nonclimacteric fruit that mainly consists of four tissues: the epicarp, albedo, segment membrane and juice sac. The fruit quality is determined by the characteristics of these four tissues. However, our knowledge of the molecular processes that occur in these four tissues during citrus fruit development and ripening is limited.
View Article and Find Full Text PDFAlkaline stress has serious-negative effects on citrus production. Ziyang xiangcheng ( Sieb. ex Tanaka) (Cj) is a rootstock that is tolerant to alkaline stress and iron deficiency.
View Article and Find Full Text PDFFruit ripening in citrus is not well-understood at the molecular level. Knowledge of the regulatory mechanism of citrus fruit ripening at the post-transcriptional level in particular is lacking. Here, we comparatively analyzed the miRNAs and their target genes in a spontaneous late-ripening mutant, "Fengwan" sweet orange (MT) ( L.
View Article and Find Full Text PDF