Publications by authors named "Guizar-Sicairos M"

The functionality of materials is determined by their composition and microstructure, that is, the distribution and orientation of crystalline grains, grain boundaries and the defects within them. Until now, characterization techniques that map the distribution of grains, their orientation and the presence of defects have been limited to surface investigations, to spatial resolutions of a few hundred nanometres or to systems of thickness around 100 nm, thus requiring destructive sample preparation for measurements and preventing the study of system-representative volumes or the investigation of materials under operational conditions. Here we present X-ray linear dichroic orientation tomography (XL-DOT), a quantitative, non-invasive technique that allows for an intragranular and intergranular characterization of extended polycrystalline and non-crystalline materials in three dimensions.

View Article and Find Full Text PDF
Article Synopsis
  • Tomographic imaging of time-evolving samples is important but challenging, especially at the nanoscale due to limits in speed and resolution in current methods.
  • A new dynamic nanotomography technique was developed that enhances imaging efficiency using sparse dynamic imaging and 4D tomography modeling.
  • This technique significantly improves temporal resolution by 40 times and allows for detailed observations of the hydration process in polymer electrolyte fuel cell catalysts, aiding in the understanding and optimization of their performance.
View Article and Find Full Text PDF

Advances in science, medicine and engineering rely on breakthroughs in imaging, particularly for obtaining multiscale, three-dimensional information from functional systems such as integrated circuits or mammalian brains. Achieving this goal often requires combining electron- and photon-based approaches. Whereas electron microscopy provides nanometre resolution through serial, destructive imaging of surface layers, ptychographic X-ray computed tomography offers non-destructive imaging and has recently achieved resolutions down to seven nanometres for a small volume.

View Article and Find Full Text PDF

Understanding the nature and preservation of microbial traces in extreme environments is crucial for reconstructing Earth's early biosphere and for the search for life on other planets or moons. At Rio Tinto, southwestern Spain, ferric oxide and sulfate deposits similar to those discovered at Meridiani Planum, Mars, entomb a diversity of fossilized organisms, despite chemical conditions commonly thought to be challenging for life and fossil preservation. Investigating this unique fossil microbiota can elucidate ancient extremophile communities and the preservation of biosignatures in acidic environments on Earth and, potentially, Mars.

View Article and Find Full Text PDF

Polymer electrolyte fuel cells are an essential technology for future local emission-free mobility. One of the critical challenges for thriving commercialization is water management in the cells. We propose small- and wide-angle X-ray scattering as a suitable diagnostic tool to quantify the liquid saturation in the catalyst layer and determine the hydration of the ion-conducting membrane in real operating conditions.

View Article and Find Full Text PDF

The development of small-angle scattering tensor tomography has enabled the study of anisotropic nanostructures in a volume-resolved manner. It is of great value to have reconstruction methods that can handle many different nanostructural symmetries. For such a method to be employed by researchers from a wide range of backgrounds, it is crucial that its reliance on prior knowledge about the system is minimized, and that it is robust under various conditions.

View Article and Find Full Text PDF

The complex nature of liquid water saturation of polymer electrolyte fuel cell (PEFC) catalyst layers (CLs) greatly affects the device performance. To investigate this problem, we present a method to quantify the presence of liquid water in a PEFC CL using small-angle X-ray scattering (SAXS). This method leverages the differences in electron densities between the solid catalyst matrix and the liquid water filled pores of the CL under both dry and wet conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Myelinated axons transmit signals in the brain through action potentials, but accurately mapping their crossing paths is challenging due to influence from unrelated brain structures.
  • Small-angle X-ray scattering (SAXS) can specifically detect myelinated axons by identifying distinct peaks in their scattering patterns, allowing for better resolution of fiber crossings.
  • The study demonstrates SAXS's effectiveness in various brain samples and positions it as a reliable tool for validating fiber orientations obtained from other imaging techniques like diffusion MRI and microscopy.
View Article and Find Full Text PDF

Reducing precious metal loading in the anodic catalyst layer (CL) is indispensable for lowering capital costs and enabling the widespread adoption of polymer electrolyte water electrolysis. This work presents the first three-dimensional reconstruction of a TiO-supported IrO based core shell CL (3 mg/cm), using high-resolution X-ray ptychographic tomography at cryogenic temperature of 90 K. The high data quality and phase sensitivity of the technique have allowed the reconstruction of all four phases namely pore space, IrO, TiO support matrix and the ionomer network, the latter of which has proven to be a challenge in the past.

View Article and Find Full Text PDF

Healing large bone defects remains challenging in orthopedic surgery and is often associated with poor outcomes and complications. A major issue with bioengineered constructs is achieving a continuous interface between host bone and graft to enhance biological processes and mechanical stability. In this study, we have developed a new bioengineering strategy to produce oriented biocompatible 3D PLGA/aCaP nanocomposites with enhanced osseointegration.

View Article and Find Full Text PDF

Preparation conditions have a vital effect on the structure of alumina-supported hydrodesulfurization (HDS) catalysts. To explore this effect, we prepared two NiMoS/AlO catalyst samples with the same target composition using different chemical sources and characterizing the oxidic NiMo precursors and sulfided and spent catalysts to understand the influence of catalyst structure on performance. The sample prepared from ammonium heptamolybdate and nickel nitrate (sample A) contains Mo in the oxidic precursor predominantly in tetrahedral coordination in the form of crystalline domains, which show low reducibility and strong metal-support interactions.

View Article and Find Full Text PDF

Many European sculptures and altarpieces from the Middle Ages were decorated with Zwischgold, a bilayer metal leaf with an ultra-thin gold face backed by silver. Zwischgold corrodes quickly when exposed to air, causing the surface of the artefact to darken and lose gloss. The conservation of such Zwischgold applied artefacts has been an obstinate problem.

View Article and Find Full Text PDF

The acquisition speed and spatial resolution of X-ray nanotomography have continuously improved over the last decades. Coherent diffraction-based techniques breach the 10 nm resolution barrier frequently and thus pose stringent demands on sample positioning accuracy and stability. At the same time there is an increasing desire to accommodate in situ or operando measurements.

View Article and Find Full Text PDF

Osteoarthritis (OA) is the most common joint disease, where articular cartilage degradation is often accompanied with sclerosis of the subchondral bone. However, the association between OA and tissue mineralization at the nanostructural level is currently not understood. In particular, it is technically challenging to study calcified cartilage, where relevant but poorly understood pathological processes such as tidemark multiplication and advancement occur.

View Article and Find Full Text PDF

Ptychographic hard X-ray computed tomography (PXCT) is a recent method allowing imaging with quantitative electron-density contrast. Here, we imaged, at cryogenic temperature and without sectioning, cellular and subcellular structures of a chemically fixed and stained wild-type mouse retina, including axons and synapses, with complete isotropic 3D information over tens of microns. Comparison with tomograms of degenerative retina from a mouse model of retinitis pigmentosa illustrates the potential of this method for analyzing disease processes like neurodegeneration at sub-200 nm resolution.

View Article and Find Full Text PDF

Conodont elements, microfossil remains of extinct primitive vertebrates, are commonly exploited as mineral archives of ocean chemistry, yielding fundamental insights into the palaeotemperature and chemical composition of past oceans. Geochemical assays have been traditionally focused on the so-called lamellar and white matter crown tissues; however, the porosity and crystallographic nature of the white matter and its inferred permeability are disputed, raising concerns over its suitability as a geochemical archive. Here, we constrain the characteristics of this tissue and address conflicting interpretations using ptychographic X-ray-computed tomography (PXCT), pore network analysis, synchrotron radiation X-ray tomographic microscopy (srXTM) and electron back-scatter diffraction (EBSD).

View Article and Find Full Text PDF

The nanostructural adaptation of bone is crucial for its biocompatibility with orthopedic implants. The bone nanostructure also determines its mechanical properties and performance. However, the bone's temporal and spatial nanoadaptation around degrading implants remains largely unknown.

View Article and Find Full Text PDF

Hypothesis: pH-responsive aminolipid self-assemblies are promising platforms for the targeted delivery of antimicrobial peptides (AMPs), with the potential to improve their therapeutic efficiency and physico-chemical stability.

Experiments: pH-sensitive nanocarriers based on dispersed self-assemblies of 1,2-dioleoyl-3-dimethylammonium-propane (DODAP) with the human cathelicidin LL-37 in excess water were characterized at different pH values using small-angle X-ray scattering, cryogenic transmission electron microscopy, and dynamic light scattering. Fluorescence and electrophoretic mobility measurements were used to probe the encapsulation efficiency of LL-37 and the nanocarriers' surface potential.

View Article and Find Full Text PDF

The performance of functional materials is either driven or limited by nanoscopic heterogeneities distributed throughout the material's volume. To better our understanding of these materials, we need characterization tools that allow us to determine the nature and distribution of these heterogeneities in their native geometry in 3D. Here, we introduce a method based on x-ray near-edge spectroscopy, ptychographic x-ray computed nanotomography, and sparsity techniques.

View Article and Find Full Text PDF

Transmission electron microscopes use electrons with wavelengths of a few picometers, potentially capable of imaging individual atoms in solids at a resolution ultimately set by the intrinsic size of an atom. However, owing to lens aberrations and multiple scattering of electrons in the sample, the image resolution is reduced by a factor of 3 to 10. By inversely solving the multiple scattering problem and overcoming the electron-probe aberrations using electron ptychography, we demonstrate an instrumental blurring of less than 20 picometers and a linear phase response in thick samples.

View Article and Find Full Text PDF

Myelin insulates neuronal axons and enables fast signal transmission, constituting a key component of brain development, aging and disease. Yet, myelin-specific imaging of macroscopic samples remains a challenge. Here, we exploit myelin's nanostructural periodicity, and use small-angle X-ray scattering tensor tomography (SAXS-TT) to simultaneously quantify myelin levels, nanostructural integrity and axon orientations in nervous tissue.

View Article and Find Full Text PDF

Hydrogen (H) sensors that can be produced with cost-effective manufacturing tools are critical for enabling safety in the emerging hydrogen economy. The use of melt-processed nanocomposites in this context would allow the combination of the advantages of plasmonic hydrogen detection with polymer technology; an approach which is held back by the slow diffusion of H through the polymer matrix. Here, we show that the use of an amorphous fluorinated polymer, compounded with colloidal Pd nanoparticles prepared by highly scalable continuous flow synthesis, results in nanocomposites that display a high H diffusion coefficient in the order of 10 cm s.

View Article and Find Full Text PDF

Gaining insight to pathologically relevant processes in continuous volumes of unstained brain tissue is important for a better understanding of neurological diseases. Many pathological processes in neurodegenerative disorders affect myelinated axons, which are a critical part of the neuronal circuitry. Cryo ptychographic X-ray computed tomography in the multi-keV energy range is an emerging technology providing phase contrast at high sensitivity, allowing label-free and non-destructive three dimensional imaging of large continuous volumes of tissue, currently spanning up to 400,000 μm.

View Article and Find Full Text PDF

Mechanical loading affects tendon healing and recovery. However, our understanding about how physical loading affects recovery of viscoelastic functions, collagen production and tissue organisation is limited. The objective of this study was to investigate how different magnitudes of loading affects biomechanical and collagen properties of healing Achilles tendons over time.

View Article and Find Full Text PDF