Publications by authors named "Guixiong Chen"

A lighting device with a wide color-tunable range is still a challenge for lighting based on either organic light-emitting diodes (OLEDs) or inorganic LEDs. In this work, we first proposed a novel hybrid device of organic LEDs and inorganic blue GaN LEDs to achieve full white and other colors. Organic LEDs were stacked with green and red emissive layers and connected with blue GaN LEDs in parallel but in opposite polarity voltage.

View Article and Find Full Text PDF

Extracting light from organic light-emitting diodes (OLEDs) and improving the angular distribution are essential for their commercial applications in illumination and displays. In this work, hybrid microlens arrays (MLAs) and gratings with periods and depths in the scale of submicron have been designed and incorporated on the lighting surface of OLEDs for simultaneous enhancement of light outcoupling efficiency and angular distribution improvement. It is found that the augmentation of light extraction efficiency is mainly attributed to the MLAs, while the gratings can improve the viewing angle by increasing the angular distribution uniformity.

View Article and Find Full Text PDF

Continuous developments of innovative anticounterfeiting strategies are vital to restrain the fast-growing counterfeit markets. Physical unclonable function (PUF)-based taggants allow for a practical solution to provide irreproducible codes for strong authentication. Herein, an advanced anticounterfeiting strategy with multiple security levels was successfully developed using screen printing and atomic layer infiltration (ALI) techniques.

View Article and Find Full Text PDF

Curved integral imaging 3D display could provide enhanced 3D sense of immersion and wider viewing angle, and is gaining increasing interest among discerning users. In this work, large scale microlens arrays (MLAs) on flexible PMMA substrate were achieved based on screen printing method. Meanwhile, an inverted reflowing configuration as well as optimization of UV resin's viscosity and substrate's surface wettability were implemented to improved the numerical aperture (NA) of microlenses.

View Article and Find Full Text PDF

Thin film encapsulation (TFE) is one of the key problems that hinders the lifetime and widespread commercialization of flexible organic light-emitting diodes (OLEDs). In this work, TFE of OLEDs with AlO/alucone laminates grown by atomic layer deposition (ALD) and molecular layer deposition (MLD) as moisture barriers were demonstrated. The barrier performances of AlO/alucone laminates with respect to the individual layer thickness and the number of dyads were investigated.

View Article and Find Full Text PDF

Bi-functional thin film with both selected light extraction and reliable moisture vapor barrier was proposed for simultaneous light management and encapsulation in the fields of lighting and display. Atomic layer deposition (ALD) was employed to obtain TiO and AlO films with high uniformity, forming distributed Bragg reflector (DBR) structure. The DBRs exhibited excellent and tunable optical properties, as well as reliable moisture barrier performance.

View Article and Find Full Text PDF