Publications by authors named "Guixin Jin"

BiS/TiCT nanomaterials were successfully prepared through a simple hydrothermal method. Various methods were used for their characterization, including XRD, XPS, SEM, EDS, and BET, along with testing their gas-sensing properties. The results showed that the response value to 100 ppm ammonia at room temperature reached 107%, which was 14.

View Article and Find Full Text PDF

Two-dimensional material (2D material) MXene has great application potential in gas sensors because of its excellent controllable performance and vast specific surface area. In this study, we used a straightforward in-situ electrostatic self-assembly technique to create Fe(OH)3/Ti3C2Tx nanocomposites, which were then used to fabricate gas sensors for ammonia detection at room temperature (25 ℃). Several characterization methods were performed aimed at determining the surface appearance and construction of the nanocomposites, and the sensing characteristics and mechanism were also systematically examined.

View Article and Find Full Text PDF

Pd-based materials have received remarkable attention and exhibit excellent H sensing performance due to their superior hydrogen storage and catalysis behavior. However, the synergistic effects originated from the decoration of Pd on a metal oxide support to boost the sensing performance are ambiguous, and the deep investigation of metal support interaction (MSI) on the H sensing mechanism is still unclear. Here, the model material of Pd nanoparticle-decorated WO nanosheet is synthesized, and individual fine structures can be achieved by treating it at different temperatures.

View Article and Find Full Text PDF