Zn-air batteries (ZABs) present high energy density and high safety but suffer from low oxygen reaction reversibility and dendrite growth at Zn electrode in alkaline electrolytes. Non-alkaline electrolytes have been considered recently for improving the interfacial processes in ZABs. However, the dynamic evolution and reaction mechanisms regulated by electrolytes at both the positive and Zn negative electrodes remain elusive.
View Article and Find Full Text PDFBeilstein J Nanotechnol
November 2024
2D sliding ferroelectric semiconductors have greatly expanded the ferroelectrics family with the flexibility of bandgap and material properties, which hold great promise for ultrathin device applications that combine ferroelectrics with optoelectronics. Besides the induced different resistance states for non-volatile memories, the switchable ferroelectric polarizations can also modulate the photogenerated carriers for potentially ultrafast optoelectronic devices. Here, it is demonstrated that the room temperature sliding ferroelectricity can be used for ultrafast switchable photovoltaic response in ε-InSe layers.
View Article and Find Full Text PDFInt Immunopharmacol
September 2024
Peripheral nerve injury seriously endangers human life and health, but there is no clinical drug for the treatment of peripheral nerve injury, so it is imperative to develop drugs to promote the repair of peripheral nerve injury. Erythropoietin (EPO) not only has the traditional role of promoting erythropoiesis, but also has a tissue-protective effect. Over the past few decades, researchers have confirmed that EPO has neuroprotective effects.
View Article and Find Full Text PDFThe bulk photovoltaic effect (BPVE) originating from spontaneous charge polarizations can reach high conversion efficiency exceeding the Shockley-Queisser limit. Emerging van der Waals (vdW) heterostructures provide the ideal platform for BPVE due to interfacial interactions naturally breaking the crystal symmetries of the individual constituents and thus inducing charge polarizations. Here, we show an approach to obtain ultrafast BPVE by taking advantage of dual interfacial polarizations in vdW heterostructures.
View Article and Find Full Text PDFAll-solid-state lithium (Li) batteries have attracted considerable interest due to their potential in high energy density as well as safety. However, the realization of a stable Li/solid-state electrolyte (SSE) interface remains challenging. Herein, two-dimensional graphene-like CN (g-CN) as a coating layer on LiAlTi(PO) (LATP) electrolyte (LATP@CN) has been applied to construct the stable Li/SSE interface.
View Article and Find Full Text PDFMacrophages play a crucial role in the inflammatory response following sciatic nerve injury. Studies have demonstrated that C-X-C motif chemokine (CXCL) 1 recruit macrophages by binding to C-X-C chemokine receptor (CXCR) 2 and participates in the inflammatory response of various diseases. Based on these findings, we aimed to explore the role of the CXCL1-CXCR2 axis in the repair process after peripheral nerve injury.
View Article and Find Full Text PDFUnderstanding the mechanisms of resistance of hepatocellular carcinoma (HCC) to targeted therapies and immune checkpoint blockade is critical for the development of new combination therapies and improving patient survival. Here, we found that in HCC, anti-programmed cell death 1 ligand 1 (PD-L1) therapy reduces liver cancer growth, but the tumors eventually become resistant to continued therapy. Experimental analyses shows that the infiltration of pathogenic T helper 17 (pTh17) cells increases in drug-resistant HCC, and pTh17 cells secrete interleukin-17A (IL-17A), which promotes the expression of PD-L1 on the surface of HCC cells and produces resistance to anti-PD-L1 therapy.
View Article and Find Full Text PDFThe interfacial processes, mainly the lithium (Li) plating/stripping and the evolution of the solid electrolyte interphase (SEI), are directly related to the performance of all-solid-state Li-metal batteries (ASSLBs). However, the complex processes at solid-solid interfaces are embedded under the solid-state electrolyte, making it challenging to analyze the dynamic processes in real time. Here, using in situ electrochemical atomic force microscopy and optical microscopy, we directly visualized the Li plating/stripping/replating behavior, and measured the morphological and mechanical properties of the on-site formed SEI at nanoscale.
View Article and Find Full Text PDFMicromachines (Basel)
December 2023
Multi-channel high-speed wire electrical discharge machining (HSWEDM) has shown great potential in enhancing the cutting rate of metal workpieces. However, the mechanism of multi-channel discharges in this technique remains unclear. In this paper, the equivalent circuit and processing model of the multi-channel HSWEDM were developed to investigate the discharge characteristics.
View Article and Find Full Text PDFAll-solid-state lithium (Li) metal batteries (ASSLMBs) employing sulfide solid electrolytes have attracted increasing attention owing to superior safety and high energy density. However, the instability of sulfide electrolytes against Li metal induces the formation of two types of incompetent interphases, solid electrolyte interphase (SEI) and mixed conducting interphase (MCI), which significantly blocks rapid Li-ion transport and induces uneven Li deposition and continuous interface degradation. In this contribution, a dynamically stable mixed conducting interphase (S-MCI) is proposed by in situ stress self-limiting reaction to achieve the compatibility of Li metal with composite sulfide electrolytes (Li PS Cl (LPSCl) and Li GeP S (LGPS)).
View Article and Find Full Text PDFInterleukin 17A (IL-17A) is a major member of the IL-17 cytokine family and is produced mainly by T helper 17 (Th17) cells. Other cells such as CD8 T cells, γδ T cells, natural killer T cells and innate lymphoid-like cells can also produce IL-17A. In healthy individuals, IL-17A has a host-protective capacity, but excessive elevation of IL-17A is associated with the development of autoimmune diseases and cancer.
View Article and Find Full Text PDFEnviron Sci Ecotechnol
October 2023
•The advanced technologies of the first carbon-neutral Olympic Games are introduced.•Successful application experience of each technology is introduced.•This correspondence is conducive to the promotion and application of technologies.
View Article and Find Full Text PDFThe C-X-C chemokine ligand (CXCL) 1 and its receptor C-X-C chemokine receptor (CXCR) 2 are widely expressed in the peripheral nervous systems (PNS) and central nervous systems (CNS) and are involved in the development of inflammation and pain after various nerve injuries. Once a nerve is damaged, it affects not only the neuron itself but also lesions elsewhere in its dominant site. After the CXCL1/CXCR2 axis is activated, multiple downstream pathways can be activated, such as c-Raf/MAPK/AP-1, p-PKC-μ/p-ILK/NLRP3, JAK2/STAT3, TAK1/NF-κB, etc.
View Article and Find Full Text PDFWater-in-salt (WIS) electrolyte is considered as one of most promising systems for aqueous zinc batteries (AZBs) due to its dendrite-free plating/stripping with nearly 100% Coulombic efficiency. However, the understanding of the interfacial mechanisms remains elusive, which is crucial for further improvements in battery performance. Herein, the interfacial processes of solid electrolyte interphase (SEI) formation and subsequent Zn plating/stripping are monitored by in situ atomic force microscopy and in situ optical microscopy.
View Article and Find Full Text PDFInteract Cardiovasc Thorac Surg
November 2022
Thermal ablation has become a novel method for the treatment of pulmonary nodules, but the short-time evaluation of the ablation effect is mainly based on computed tomography images. We report a case of local tumour residue after microwave ablation, which was confirmed by pathology after lobectomy. This case alerts us that thermal ablation should not be the preferred treatment for operable pulmonary nodules.
View Article and Find Full Text PDFLithium-sulfur batteries are promising candidates of energy storage devices. Both adjusting salt/solvent ratio and applying quasi-solid-state electrolytes are regarded as effective strategies to improve the lithium (Li) anode performance. However, reaction mechanisms and interfacial properties in quasi-solid-state lithium-sulfur (QSSLS) batteries with high salt concentration are not clear.
View Article and Find Full Text PDFIntroduction: This study is conducted to investigate the correlation between perioperative fractional exhaled nitric oxide and postoperative pneumonia (POP) and the feasibility of perioperative FeNO for predicting POP in surgical lung cancer patients.
Methods: Patients who were diagnosed with non-small-cell lung cancer (NSCLC) were prospectively analyzed, and the relationship between perioperative FeNO and POP was evaluated based on patients' basic characteristics and clinical data in the hospital.
Results: There were 218 patients enrolled in this study.
All-carbon graphdiyne (GDY)-based materials have attracted extensive attention owing to their extraordinary structures and outstanding performance in electrochemical energy storage. Straightforward insights into the interfacial evolution at GDY electrode/electrolyte interface could crucially enrich the fundamental comprehensions and inspire targeted regulations. Herein, optical microscopy and atomic force microscopy monitoring of the GDY and N-doped GDY electrodes reveal the interplay between the solid electrolyte interphase (SEI) and Li deposition.
View Article and Find Full Text PDFIn the past 20 years, many studies have been performed on ballast layer inspection and condition evaluation with ground penetrating radar (GPR). GPR is a non-destructive means that can reflect the ballast layer condition (fouling, moisture) by analysing the received signal variation. Even though GPR detection/inspection for ballast layers has become mature, some challenges still need to be stressed and solved, e.
View Article and Find Full Text PDFIntroduction: Postoperative ineffective cough is easy to occur after thoracic surgery, and it is also a risk factor for postoperative pulmonary complications (PPCs).
Objectives: To explore the value of peak expiratory flow rate (PEF) in evaluating cough ability in patients undergoing lung surgery and evaluate the effectiveness of chest wall compression during the expiratory phase by PEF.
Methods: From September 2020 to May 2021, the researchers collected the data of patients who underwent lung surgery.
Fine particulate matter (PM) has become a major pressing challenge for China and remains a concern of its central government. This paper draws on a natural experiment generated by the National Ambient Air Quality Monitoring Network (NAAQMN) program in China to explore whether national air quality monitoring reduces local air pollution. In this study, we use a city-level dataset for 4200 Chinese cities covering 2001-2015 and a difference-in-differences (DID) assessment design to assess the impact of the NAAQMN program on local PM emissions in China.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2021
Uncontrolled dendrite formation in the high energy density of lithium (Li) metal batteries (LMBs) may pose serious safety risks. While numerous studies have attempted to protect separators, these proposed methods fail to effectively inhibit upward dendrite growth that punctures through the separator. Here, we introduce a novel "orientated-growth" strategy that transfers the main depositional interface to the anode/current collector interface from the anode/separator interface.
View Article and Find Full Text PDF