Background: Sepsis is a systemic inflammatory response syndrome characterized by persistent inflammation and immunosuppression, leading to septic shock and multiple organ dysfunctions. Ubiquitin-specific peptidase 10 (USP10), a deubiquitinase enzyme, plays a vital role in cancer and arterial restenosis, but its involvement in sepsis is unknown.
Objective: In this study, we investigated the significance of USP10 in lipopolysaccharide (LPS)-stimulated macrophages and its biological roles in LPS-induced sepsis.
As an important part of the acid fracturing process of carbonate reservoir, the performance of acid fracturing working fluid directly affects the stimulation effect of oil wells. In this paper, formaldehyde (agent A) and ammonium chloride (agent B) were used as the matrix. Several aldehydes with different volume ratios were prepared.
View Article and Find Full Text PDFEndothelial progenitor cell (EPC) transplantation has shown advantages in the treatment of myocardial infarction (MI) in animal models and clinical trials through mechanisms of direct intercellular contacts, autocrine, and paracrine. However, the effects of EPC transplantation for MI treatment remain controversial and the underlying mechanisms have not been fully elucidated. Here, we explored the role of Rab27a in the therapeutic potential of EPC transplantation in MI.
View Article and Find Full Text PDFStem cell therapy can be used to repair and regenerate damaged hearts tissue; nevertheless, the low survival rate of transplanted cells limits their therapeutic efficacy. Recently, it has been proposed that exosomes regulate multiple cellular processes by mediating cell survival and communication among cells. The following study investigates whether injured cardiomyocytes-derived exosomes (cardiac exosomes) affect the survival of transplanted bone marrow mesenchymal stem cells (BMSCs) in infarcted heart.
View Article and Find Full Text PDFOsteosarcoma (OS) is the most common primary bone tumor, occurring frequently in adolescents and possessing a high malignant severity. MicroRNAs play critical roles during OS development. Thus, elucidation of the involvement of specific microRNAs in the development of OS may provide novel therapeutic targets for OS treatment.
View Article and Find Full Text PDF