Methanogens, which are found exclusively in the Archaea domain of life, have the potential to help solve future energy challenges by producing methane. As a result, their metabolism has attracted significant attention in recent years. Despite being unable to grow on sugars, they store glycogen, which raises intriguing questions about the role of this polymer in methanogen metabolism and the signals that trigger its degradation when methanogenic substrates are not available.
View Article and Find Full Text PDFNatural proteins are frequently marginally stable, and an increase in environmental temperature can easily lead to unfolding. As a result, protein engineering to improve protein stability is an area of intensive research. Nonetheless, since there is usually a high degree of structural homology between proteins from thermophilic organisms and their mesophilic counterparts, the identification of structural determinants for thermoadaptation is challenging.
View Article and Find Full Text PDFMollusk hemocyanins, among the largest known proteins, are used as immunostimulants in biomedical and clinical applications. The hemocyanin of the Chilean gastropod Concholepas concholepas (CCH) exhibits unique properties, which makes it safe and effective for human immunotherapy, as observed in animal models of bladder cancer and melanoma, and dendritical cell vaccine trials. Despite its potential, the structure and amino acid sequence of CCH remain unknown.
View Article and Find Full Text PDFAlthough ADP-dependent sugar kinases were first described in archaea, at present, the presence of an ADP-dependent glucokinase (ADP-GK) in mammals is well documented. This enzyme is mainly expressed in hematopoietic lineages and tumor tissues, although its role has remained elusive. Here, we report a detailed kinetic characterization of the human ADP-dependent glucokinase (hADP-GK), addressing the influence of a putative signal peptide for endoplasmic reticulum (ER) destination by characterizing a truncated form.
View Article and Find Full Text PDFFEBS J
December 2022
Methanogenic archaea have received attention due to their potential use in biotechnological applications such as methane production, so their metabolism and regulation are topics of special interest. When growing in a nutrient-rich medium, these organisms exhibit gluconeogenic metabolism; however, under starvation conditions, they turn to glycolytic metabolism. To date, no regulatory mechanism has been described for this gluconeogenic/glycolytic metabolic switch.
View Article and Find Full Text PDFEndoxylanases belonging to family 10 of the glycoside hydrolases (GH10) are versatile in the use of different substrates. Thus, an understanding of the molecular mechanisms underlying substrate specificities could be very useful in the engineering of GH10 endoxylanases for biotechnological purposes. Herein, we analyzed XynA, an endoxylanase that contains a (β/α)-barrel domain and an intrinsically disordered region (IDR) of 29 amino acids at its amino end.
View Article and Find Full Text PDFPolyethylene terephthalate (PET) is one of the most widely used synthetic plastics in the packaging industry, and consequently has become one of the main components of plastic waste found in the environment. However, several microorganisms have been described to encode enzymes that catalyze the depolymerization of PET. While most known PET hydrolases are thermophilic and require reaction temperatures between 60°C and 70°C for an efficient hydrolysis of PET, a partial hydrolysis of amorphous PET at lower temperatures by the polyester hydrolase PETase from the mesophilic bacterium Ideonella sakaiensis has also been reported.
View Article and Find Full Text PDFHalophilic enzymes need high salt concentrations for activity and stability and are considered a promising source for biotechnological applications. The model study for haloadaptation has been proteins from the class of Archaea, where common structural characteristics have been found. However, the effect of salt on enzyme function and conformational dynamics has been much less explored.
View Article and Find Full Text PDFADP-dependent kinases were first described in archaea, although their presence has also been reported in bacteria and eukaryotes (human and mouse). This enzyme family comprises three substrate specificities; specific phosphofructokinases (ADP-PFKs), specific glucokinases (ADP-GKs), and bifunctional enzymes (ADP-PFK/GK). Although many structures are available for members of this family, none exhibits fructose-6-phosphate (F6P) at the active site.
View Article and Find Full Text PDFProtein Sci
April 2021
Enzymes with hydroxymethylpyrimidine/phosphomethylpyrimidine kinase activity (HMPPK) are essential in the vitamin B1 (thiamine pyrophosphate) biosynthesis and recycling pathways. In contrast, enzymes with pyridoxal kinase activity (PLK) produce pyridoxal phosphate (vitamin B6), an essential cofactor for various biochemical reactions. In the ATP-dependent vitamin kinases family, the members of PLK/HMPPK-like subfamily have both enzymatic activities.
View Article and Find Full Text PDFThe hydroxymethylpyrimidine phosphate kinases (HMPPK) encoded by the thiD gene are involved in the thiamine biosynthesis pathway, can perform two consecutive phosphorylations of 4-amino-5-hydroxymethyl-2-methyl pyrimidine (HMP) and are found in thermophilic and mesophilic bacteria, but only a few characterizations of mesophilic enzymes are available. The presence of another homolog enzyme (pyridoxal kinase) that can only catalyze the first phosphorylation of HMP and encoded by pdxK gene, has hampered a precise annotation in this enzyme family. Here we report the kinetic characterization of two HMPPK with structure available, the mesophilic and thermophilic enzyme from Salmonella typhimurium (StHMPPK) and Thermus thermophilus (TtHMPPK), respectively.
View Article and Find Full Text PDFThe enhanced green fluorescent protein (eGFP) is one of the most employed variants of fluorescent proteins. Nonetheless little is known about the oxidative modifications that this protein can undergo in the cellular milieu. The present work explored the consequences of the exposure of eGFP to free radicals derived from γ-radiolysis of water, and AAPH thermolysis.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
December 2018
During evolution, some homologs proteins appear with different connectivity between secondary structures (different topology) but conserving the tridimensional arrangement of them (same architecture). These events can produce two types of arrangements; circular permutation or non-cyclic permutations. The first one results in the N and C terminus transferring to a different position on a protein sequence while the second refers to a more complex arrangement of the structural elements.
View Article and Find Full Text PDFHalophilic organisms inhabit hypersaline environments where the extreme ionic conditions and osmotic pressure have driven the evolution of molecular adaptation mechanisms. Understanding such mechanisms is limited by the common difficulties encountered in cultivating such organisms. Within the , for example, only the and the order include readily cultivable halophilic species.
View Article and Find Full Text PDFThe genome of Methanosarcinales organisms presents both ADP-dependent glucokinase and phosphofructokinase genes. However, Methanococcoides burtonii has a truncate glucokinase gene with a large deletion at the C-terminal, where the catalytic GXGD motif is located. Characterization of its phosphofructokinase annotated protein shows that is a bifunctional enzyme able to supply the absence of the glucokinase activity.
View Article and Find Full Text PDFOne central goal in molecular evolution is to pinpoint the mechanisms and evolutionary forces that cause an enzyme to change its substrate specificity; however, these processes remain largely unexplored. Using the glycolytic ADP-dependent kinases of archaea, including the orders , , and , as a model and employing an approach involving paleoenzymology, evolutionary statistics, and protein structural analysis, we could track changes in substrate specificity during ADP-dependent kinase evolution along with the structural determinants of these changes. To do so, we studied five key resurrected ancestral enzymes as well as their extant counterparts.
View Article and Find Full Text PDFNiemann-Pick disease (NPD) type A and B are recessive hereditary disorders caused by deficiency in acid sphingomyelinase (ASM). The p.Ala359Asp mutation has been described in several patients but its functional and structural effects in the protein are unknown.
View Article and Find Full Text PDFT helper type 17 (Th17) lymphocytes, characterized by the production of interleukin-17 and other pro-inflammatory cytokines, are present in intestinal lamina propria and have been described as important players driving intestinal inflammation. Recent evidence, supporting the notion of a functional and phenotypic instability of Th17 cells, has shown that Th17 differentiate into type 1 regulatory (Tr1) T cells during the resolution of intestinal inflammation. Moreover, it has been suggested that the expression of CD39 ectonucleotidase endows Th17 cells with immunosuppressive properties.
View Article and Find Full Text PDFThe activity of the ADP-dependent glucokinase from Thermococcus litoralis (TlGK) relies on the highly conserved motifs NXXE (i.e. Asn-Xaa-Xaa-Glu) and HXE (i.
View Article and Find Full Text PDFThe CD73 ectonucleotidase catalyses the hydrolysis of AMP to adenosine, an immunosuppressive molecule. Recent evidence has demonstrated that this ectonucleotidase is up-regulated in T helper type 17 cells when generated in the presence of transforming growth factor-β (TGF-β), and hence CD73 expression is related to the acquisition of immunosuppressive potential by these cells. TGF-β is also able to induce CD73 expression in CD8(+) T cells but the function of this ectonucleotidase in CD8(+) T cells is still unknown.
View Article and Find Full Text PDFEscherichia coli phosphofructokinase-2 (Pfk-2) is an obligate homodimer that follows a highly cooperative three-state folding mechanism N2 ↔ 2I ↔ 2U. The strong coupling between dissociation and unfolding is a consequence of the structural features of its interface: a bimolecular domain formed by intertwining of the small domain of each subunit into a flattened β-barrel. Although isolated monomers of E.
View Article and Find Full Text PDFEnzyme-substrate binding is a dynamic process intimately coupled to protein structural changes, which in turn changes the unfolding energy landscape. By the use of single-molecule force spectroscopy (SMFS), we characterize the open-to-closed conformational transition experienced by the hyperthermophilic adenine diphosphate (ADP)-dependent glucokinase from Thermococcus litoralis triggered by the sequential binding of substrates. In the absence of substrates, the mechanical unfolding of TlGK shows an intermediate 1, which is stabilized in the presence of Mg·ADP(-), the first substrate to bind to the enzyme.
View Article and Find Full Text PDFHuman ribokinase (RK) is a member of the ribokinase family, and is the first enzyme responsible for D-ribose metabolism, since D-ribose must first be converted into D-ribose-5-phosphate to be further metabolized and incorporated into ATP or other high energy phosphorylated compounds. Despite its biological importance, RK is poorly characterized in eukaryotes and especially in human. We have conducted a comprehensive study involving catalytic and regulatory features of the human enzyme, focusing on divalent and monovalent metal regulatory effects.
View Article and Find Full Text PDFIn the family of ATP-dependent vitamin kinases, several bifunctional enzymes that phosphorylate hydroxymethyl pyrimidine (HMP) and pyridoxal (PL) have been described besides enzymes specific towards HMP. To determine how bifunctionality emerged, we reconstructed the sequence of three ancestors of HMP kinases, experimentally resurrected, and assayed the enzymatic activity of their last common ancestor. The latter has ∼ 8-fold higher specificity for HMP due to a glutamine residue (Gln44) that is a key determinant of the specificity towards HMP, although it is capable of phosphorylating both substrates.
View Article and Find Full Text PDF