Publications by authors named "Guisong He"

Induction of pyroptosis is proposed as a promising strategy for the treatment of hematological malignancies, but little is known. In the present study, we find clioquinol (CLQ), an anti-parasitic drug, induces striking myeloma and leukemia cell pyroptosis on a drug screen. RNA sequencing reveals that the interferon-inducible genes IFIT1 and IFIT3 are markedly upregulated and are essential for CLQ-induced GSDME activation and cell pyroptosis.

View Article and Find Full Text PDF

The oncogenic transcription factor c-Maf has been proposed as an ideal therapeutic target for multiple myeloma (MM), a not-yet-curable malignancy of plasma cells. In the present study, we establish a c-Maf-based luciferase screen system and apply it to screen a homemade library composed of natural products from which bruceine B (BB) is identified to display potent antimyeloma activity. BB is a key ingredient isolated from the Chinese traditional medicinal plant Brucea javanica (L.

View Article and Find Full Text PDF

Proteasomes are overexpressed in multiple myeloma (MM) and proteasomal inhibitors (PIs) have been widely used for the treatment of MM. PIs are reported to induce MM cell apoptosis but impair necroptosis. In the present study, we found that PIs MG132 and bortezomib induce MM cell pyroptosis, a novel type of cell death, in a GSDME-dependent manner.

View Article and Find Full Text PDF

The vibration and impact of a humanoid bipedal robot during movements such as walking, running and jumping may cause potential damage to the robot's mechanical joints and electrical systems. In this paper, a composite bidirectional vibration isolator based on magnetorheological elastomer (MRE) is designed for the cushioning and damping of a humanoid bipedal robot under foot contact forces. In addition, the vibration isolation performance of the vibration isolator was tested experimentally, and then, a vibration isolator dynamics model was developed.

View Article and Find Full Text PDF

Synovial inflammation of joint tissue is the most important cause of tissue damage, joint destruction, and disability and is associated with higher morbidity or mortality. Therefore, this study aims to identify key genes in osteoarthritis synovitis tissue to increase our understanding of the underlying mechanisms of osteoarthritis and identify new therapeutic targets. Five GEO datasets with a total of 41 normal synovial membrane tissues and 45 osteoarthritis synovial membrane samples were used for analysis, and seven common differential genes were identified.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a hematologic malignancy derived from clonal expansion of plasma cells within the bone marrow and it may progress to the extramedullary region in late stage of the disease course. c-Maf, an oncogenic zipper leucine transcription factor, is overexpressed in more than 50% MM cell lines and primary species in association with chromosomal translocation, aberrant signaling transduction and modulation of stability. By triggering the transcription of critical genes including CCND2, ITGB7, CCR1, ARK5, c-Maf promotes MM progress, proliferation, survival and chemoresistance.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are emerging as important regulators of various physiological and pathological processes and may serve key roles in the maintenance of bone homeostasis via effects on osteoblast differentiation. The aim of the present study was to define the role of miR-877-3p in osteoblast differentiation using MC3T3-E1 cells, an osteoblast precursor cell line. It was demonstrated using RT-qPCR analysis that miR-877-3p was gradually increased in MC3T3-E1 cells during the osteoblastic differentiation induced by transforming growth factor (TGF)-β1.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) have emerged as pivotal regulators in various physiological and pathological processes at the post‑transcriptional level, and may serve important roles in osteogenic differentiation. However, their roles and functions are not fully understood. In the present study, miR‑223‑5p was identified as a modulator of osteoblastic differentiation in MC3T3‑E1 cells.

View Article and Find Full Text PDF

Objective This study was performed to confirm the anti-inflammatory effect of the Mongolian drug Naru-3 on traumatic spinal cord injury (TSCI) and its possible mechanism of action. Methods We prepared a TSCI model using Sprague-Dawley rats. The rats were divided into a Naru-3 group and a methylprednisolone group.

View Article and Find Full Text PDF